

CATALOGUE 2020

Blauberg Ventilation offers a wide scope of ventilation equipment which combines innovative technology, contemporary design and German quality.

The Company offers a wide range of domestic fans, ventilation units with heat recovery, industrial fans, and various accessories for creating ventilation systems.

Our philosophy is to cultivate long-term client relations based on trust and reliability. We are always open to cooperation in the field of ventilation equipment production.

Blauberg Ventilation is a part of the international group of companies Blauberg Group.

The Group headquarters as well as the **R&D center** and the quality control laboratory are located in Munich, Germany.

The Group is represented by a great number of offices and companies all over the world, ensuring timely supply and servicing.

MANUFACTURING FACILITIES

- Munich, Germany
- Trier, Germany
- Poznań, Poland
- Elk, Poland
- Tata, Hungary
- Kyiv, Ukraine
 Moscow, Russia

blaubergventilation.com.au

COUNTRIES WHERE YOU CAN BUY OUR PRODUCTS 3500 EMPLOYEES WORLDWIDE

Blauberg Group develops ventilation technology which complies with European and international standards and requirements specific to efficiency, reliability and safety.

Continuous improvement of the entire process flow, stringent product quality assurance at each production step, active implementation of innovative technology and consistent improvement of consumer appeal of the products were the key elements of the group's strategy of earning international recognition and making the Blauberg Group brands stand for uncompromising quality.

Inline fans			Residential fans		
	Turbo	8		Wind	40
	Primo 355-400 AC & EC	12		BLA920N	41
	Turbo EC	16		BLA150N	42
	lso-Mix	20		BLA907N	43
	Iso-Mix EC	24	er	BLA910LED	44
			Single-room units w	ith heat recovery	
	Centro Centro FC	28	Single-room units w	ith heat recovery Vento Expert A50-1 S10 Pro	46
Residential fans	Centro Centro EC	28 32	Single-room units w	ith heat recovery Vento Expert A50-1 S10 Pro Vento Expert A50-1 S10 W V.2	46
Residential fans	Centro EC Ducto	28 32 36	Single-room units w	ith heat recovery Vento Expert A50-1 S10 Pro Vento Expert A50-1 S10 W V.2 Vento Expert A100-1 S10 W V.2	46 52 58
<image/> <section-header></section-header>	Centro EC Ducto Bravo	28 32 36 38	Single-room units w	ith heat recovery Vento Expert A50-1 S10 Pro Vento Expert A50-1 S10 W V.2 Vento Expert A100-1 S10 W V.2 FRESHBOX 100 ERV WiFi	46 52 58 64

CONTENTS

Air handling units w	vith heat recovery		Axial fans		
	KOMFORT ERV D S41	76		Plate Mounted Axial Fans	106
	KOMFORT ERV EC DB S14	80		SS & Heavy Duty Roof Moun Axial Fans - Vertical Discharge	ted e 107
	KOMFORT Ultra S3 250 S3 white	84		Inline Axial Fans	108
	KOMFORT Ultra EC S2 300	92		Inline Axial Fans Ex'd'	109
	KOMFORT Ultra EC L2 300	96		Plate Mounted Axial Fans	110
Grilles	Decor G	100	Roof fans	Plate Mounted Axial Fans Ex'd'	111
	Decor	101		Roof Air Cowl – Vertical Discharge	112
	Decor HK	102		Roof Air Cowl – Horizontal Discharge	113
	Decor EG	103		Roof Mounted Axial Fans – Horizontal Discharge	114
	DPR	104		Roof Mounted Axial Fans – Supply Air	115

Roof fans			Ducting		
	Roof Mounted Axial Fans – Vertical Discharge	116		Ducting	128
	Roof Mounted Centrifugal Fans – Horizontal Discharge	117		Lorient LVH-O	130
	Roof Mounted Centrifugal Fans – Supply Air	118		Lorient LVH-44	131
	Roof Mounted Centrifugal Fa Vertical Discharge	ans – 119		Low Profile Ducting	132
Industrial fans	Roof Mounted Centrifugal TI Fans – Vertical Discharge	EFC 120	Diffusers and grille	s Swirl Diffusers	137
	Short Case Axial Fans	121		Supply Air Ceiling Grilles	138
0	Square Inline Centrifugal Fans	122		Round Ceiling Diffusers	140
0	TEFC	123		Jetflo Diffusers	141
Ducting	Duct Fittings	124		Linear Slot Diffusers	142
				Linear Bar Grilles	146

Diffusers and grilles

	Double Deflection Grilles	148
	Hinged Eggcrate Grilles with Removable Filter	152
	Eggcrate Grilles with Fixing Clip Reducing Neck	154
	Door Grilles	156
Dampers		
8	Opposite Blade Dampers	158

Volume Control Dampers	159
------------------------	-----

Turbo Inline mixed flow fans

Use

- Supply and extraction ventilation of offices, bathrooms, toilets, laundries, kitchens, ensuites in apartments, hotels, homes and commercial buildings.
- Ventilation air ducts requiring high pressure, powerful air flow and low noise level.
- Compatible with Ø 100 up to 315 mm round air ducts.

	Air flow:	
3	up to 1750 m ³ /	h
	486 l/s	
	Power:	
	from 21 W	

Design

- The casing is made of low flammable polypropylene.
- Ventilation unit with terminal box. Can be turned to any position.
- Special design of the casing permits easy dismantling of the impeller and motor block for fan servicing without dismantling the air duct.

Motor

- 220–240 V single phase at 50 Hz.
- All motors have a sealed ball bearing motor with a service life of up to 40,000 hours, are 2 speed with an exterior two speed switch.
- All motors have manual reset thermal overload protection as required for inline duct fans AS/NZS60335-2-80:2004.
- 100 mm & 125 mm fans cannot be speed controlled.

Wiring

- Comes with a 1.2 m lead, 2 pin plug and external two speed switching.
 Timer fans come with a 1.2 m lead, 4 pin plug and external two speed
- Timer fans come with a 1.2 m lead, 4 pin plug and external two speed switching.

Mounting

- Due to the compact design the fan is the ideal solution for mounting in limited spaces, including space behind a false ceiling.
- The fan can be installed in any section of the ventilation system from intake to the end of the ductworks.
- Wall or ceiling mounting with a mounting plate.
- **TD:** mounting kit for installation of one diameter fans in parallel (for boosting capacity)

• TL: mounting kit for installation of one diameter fans in series (for boosting pressure).

Modifications

- T: turn-off delay timer adjustable from 2 to 30 minutes.
- G: speed controller, temperature controller with external temperature sensor (cable length 4 m), power cable with Australian plug.

Designation kerr Modifications Series Duct diameter [mm] Modifications Turbo 100; 125; 150; 200; 250; 315 T: turn-off delay timer adjustable from 2 to 30 minutes G: speed controller, temperature controller with external temperature sensor, power cable with Australian plug

Ordering Information

Part Number	Model	Description
BLATURBO100	Turbo 100	MIXFLO 100 mm 2 SPEED FAN
BLATURBO125	Turbo 125	MIXFLO 125 mm 2 SPEED FAN
BLATURBO150	Turbo 150	MIXFL0 150 mm 2 SPEED FAN
BLATURBO200	Turbo 200	MIXFLO 200 mm 2 SPEED FAN
BLATURBO250	Turbo 250	MIXFLO 250 mm 2 SPEED FAN
BLATURBO315	Turbo 315	MIXFLO 315 mm 2 SPEED FAN
BLATURBO150T	Turbo 150 T	MIXFLO 150 mm 2 SPEED FAN C/W RUN ON TIMER & 4 PIN PLUG
BLATURBO200T	Turbo 200 T	MIXFLO 200 mm 2 SPEED FAN C/W RUN ON TIMER & 4 PIN PLUG
BLATURBO150 G	Turbo 150 G	MIXFLO 150mm C/W SPEED CONTROLLER, EXTERNAL TEMP SENSOR
BLATURBO200 G	Turbo 200 G	MIXFLO 200mm C/W SPEED CONTROLLER, EXTERNAL TEMP SENSOR
BLATURBO250 G	Turbo 250 G	MIXFL0 250mm C/W SPEED CONTROLLER, EXTERNAL TEMP SENSOR
BLATURBO350 G	Turbo 350 G	MIXFL0 315mm C/W SPEED CONTROLLER, EXTERNAL TEMP SENSOR

Overall Dimensions [mm]

Model	ØD	Ø D1	В	н	L	Weight [kg]
Turbo 100	96	164	167	190	246	1.45
Turbo 125	123	164	167	190	246	1.79
Turbo 150	148	187	220	251	289	3.18
Turbo 200	199	209	239	261	295.5	3.8
Turbo 250	247	257	287	323	383	7.83
Turbo 315	310	323	362	408	445	11.7

Technical Data

Parameters	Turbo 100		Turb	o 125	Turbo 150		
Speed	min	max	min	max	min	max	
Voltage [V]	1 ~ 230	1 ~ 230	1 ~ 230	1 ~ 230	1 ~ 230	1 ~ 230	
Frequency [Hz]	50/60	50/60	50/60	50/60	50/60	50/60	
Power [W]	21	33	23	37	42	50	
Current [A]	0.11	0.21	0.18	0.27	0.19	0.22	
Maximum air flow [m³/h (l/s)]	145 (40)	187 (52)	220 (61)	280 (78)	430 (119)	560 (156)	
RPM [min ⁻¹]	2180	2385	1950	2455	1940	2620	
Sound pressure level at 3 m [dBA]	33	38	34	39	38	48	
Max. transported air temperature [°C]	+(50	+6	60	+60		
SEC class	(2	E	3	В		
IP rating	IPX4		IP	X4	IPX4		
Motor IP rating	IP	X4	IP	X4	IPX4		
ErP	-	-	-	-	2018		

TURBO 100

Sound power level,	Total	Octave frequency bands [Hz]							InA 3 m	InA 1 m			
A-weighted	TULAL	63	125	250	500	1000	2000	4000	8000	сря з пі	сратті		
Min speed													
LwA to inlet [dBA]	54	19	35	50	49	44	37	25	17	33	43		
LwA to outlet [dBA]	53	17	34	50	49	48	36	24	17	32	42		
LwA to env. [dBA]	47	14	29	43	43	39	33	22	15	27	37		
Max speed													
LwA to inlet [dBA]	59	24	34	53	54	53	48	37	26	38	48		
LwA to outlet [dBA]	57	23	33	52	52	52	47	37	26	37	47		
LwA to env. [dBA]	52	18	29	46	48	47	43	33	23	32	42		

TURBO 125

Sound power level, A-weighted	Total	Octave 63	frequen 125	icy banc 250	ls [Hz] 500	1000	2000	4000	8000	LpA 3 m	LpA 1 m
Min speed											
LwA to inlet [dBA]	54	26	38	52	50	44	38	27	17	34	44
LwA to outlet [dBA]	54	25	37	51	49	43	38	28	18	33	43
LwA to env. [dBA]	49	21	32	46	45	40	35	25	16	29	39
Max speed											
LwA to inlet [dBA]	60	20	31	57	51	51	50	39	27	39	49
LwA to outlet [dBA]	59	20	31	56	51	51	49	39	26	38	48
LwA to env. [dBA]	54	16	27	51	46	47	45	36	24	34	44

TURBO 150

Sound power level,	Total	Octave	e freque		InA 3 m	InA 1 m					
A-weighted	Iotat	63	125	250	500	1000	2000	4000	8000	сря 5 ш	срятт
Min speed											
LwA to inlet [dBA]	59	31	45	54	52	54	48	35	29	38	48
LwA to outlet [dBA]	63	37	49	56	56	60	48	39	30	42	52
LwA to env. [dBA]	52	21	30	48	48	45	42	34	23	32	42
Max speed											
LwA to inlet [dBA]	69	38	51	57	62	60	66	49	44	48	58
LwA to outlet [dBA]	72	42	55	66	67	68	65	53	45	52	62
LwA to env. [dBA]	65	23	37	56	59	57	61	47	35	44	54

Parameters	Turbo	o 200	Turbo	o 250	Turbo 315		
Speed	min max		min	max	min	max	
Voltage [V]	1 ~ 230	1 ~ 230	1 ~ 230	1 ~ 230	1 ~ 230	1 ~ 230	
Frequency [Hz]	50/60	50/60	50/60	50/60	50/60	50/60	
Power [W]	76	108	125	177	227	315	
Current [A]	0.34	0.48	0.54	0.79	0.99	1.42	
Maximum air flow [m³/h (l/s)]	805 (224)	1080 (300)	1070 (297)	1360 (378)	1420 (394)	1750 (486)	
RPM [min ⁻¹]	1915	2380	1955	2440	2115	2505	
Sound pressure level at 3 m [dBA]	45	50	52	52 58		60	
Max. transported air temperature [°C]	+	60	+6	50	+60		
SEC class		В	-	-	-	-	
IP rating	IP	X4	IP	X4	IPX4		
Motor IP rating	IP	X4	IP	X4	IPX4		
ErP	20	18	20	18	2018		

TURBO 200

Sound power level,	Total	Octav	e freque	InA 3 m	ln∆1m						
A-weighted	Totat	63	125	250	500	1000	2000	4000	8000	LPA 5 III	Ерлтіп
Min speed											
LwA to inlet [dBA]	66	38	50	58	59	60	59	55	45	45	55
LwA to outlet [dBA]	64	40	50	54	58	59	57	51	44	43	53
LwA to env. [dBA]	60	27	42	49	54	55	54	46	34	39	49
Max speed											
LwA to inlet [dBA]	71	41	50	63	64	65	64	62	52	50	60
LwA to outlet [dBA]	70	43	52	61	66	64	63	58	51	50	60
LwA to env. [dBA]	65	34	43	54	60	60	60	53	41	45	55

TURBO 250

Sound power level,	Total	Octav	e freque	ency bar	nds [Hz]					In4.2 m	1.04.1.m
A-weighted	TOLAL	63	125	250	500	1000	2000	4000	8000	цра з пі	цра і пі
Min speed											
LwA to inlet [dBA]	72	48	57	63	66	69	64	54	45	52	62
LwA to outlet [dBA]	75	48	56	64	70	71	66	56	45	54	64
LwA to env. [dBA]	65	32	51	57	61	59	56	45	32	44	54
Max speed											
LwA to inlet [dBA]	78	52	62	66	71	75	72	62	52	58	68
LwA to outlet [dBA]	81	52	60	66	76	77	74	63	52	60	70
LwA to env. [dBA]	72	35	50	63	69	66	63	53	40	51	61

TURBO 315

Sound power level,	Total	Octave	e freque	InA 3 m	ln∆1m						
A-weighted	TULAL	63	125	250	500	1000	2000	4000	8000	сря з пі	сратт
Min speed											
LwA to inlet [dBA]	72	43	54	62	67	66	67	58	47	52	62
LwA to outlet [dBA]	70	45	57	59	64	66	63	56	46	50	60
LwA to env. [dBA]	62	28	51	53	57	57	54	46	36	41	51
Max speed											
LwA to inlet [dBA]	80	50	59	68	73	77	74	70	59	60	70
LwA to outlet [dBA]	78	51	60	66	70	75	71	66	57	58	68
LwA to env. [dBA]	72	37	51	66	66	67	65	58	48	52	62

Primo 355-400 AC & EC

Inline mixed flow fans

Use

- Inline fans for supply and exhaust ventilation of various commercial and industrial premises requiring powerful air flow.
- The fans are compatible with Ø 355 and 400 mm air ducts.
- New product combines wide capabilities and high performance features of axial and centrifugal fans, providing powerful air flow.

Air flow: up to 5700 m³/h 1583 l/s
Power: from 126 W
Noise level: from 33 dBA

Design

- The fan casing is made of polymer and reinforced with a metal housing. Due to the conically shaped polymer impeller with specially profiled blades, the air stream circular velocity increases, which results in higher air flow and pressure, as compared to characteristics of standard axial fans.
- The specially designed diffuser, impeller and airflow rectifier at the fan outlet provide smooth air flow distribution and enable the best combination of high capacity, powerful pressure and low noise. The fan casing is equipped with an airtight terminal box for connection to power mains.

Motor

- The fans are equipped with three-speed four-pole asynchronous motors or energy efficient EC motors.
- 220–240 V single phase at 50 Hz.
- All motors have a sealed ball bearing motor with a service life of up to 40,000 hours, are 2 speed with an exterior two speed switch.
- All motors have manual reset thermal overload protection as required for inline duct fans AS/NZS60335-2-80:2004.

Overall Dimensions [mm]

Model	ØD	Ø D1	В	L
Primo 355 AC & EC	350	390	450	388
Primo 400 AC & EC	395	441	500	388

Speed Control

- The AC fans are controlled by either a three-stage **CDPE-3 E5** controller or a smooth thyristor controller connected to the maximum speed terminal.
- EC models are regulated by a smooth 0-10 V controller.

Mounting

• The fans may be mounted at any place and at any angle within the ductwork system. Several fans may be installed in one system in parallel to attain higher air capacity or in series to increase operating pressure in the system. The fan casing is equipped with fixing brackets for suspended mounting.

Ordering Information

Part Number	Model	Description
BLAUPRIMO355	Primo 355	MIXFLO 355 mm 3 SPEED FAN
BLAUPRIMO400	Primo 400	MIXFLO 400 mm 3 SPEED FAN
BLAUPRIMOEC355	Primo EC 355	MIXFLO 355 mm FAN EC MOTOR
BLAUPRIMOEC400	Primo EC 400	MIXFLO 400 mm FAN EC MOTOR

12

Technical Data

Parameters		Primo 355		Primo 400			
Speed	min	mid	max	min	mid	max	
Voltage [V / 50 Hz]		1~ 230			1~ 230		
Power [W]	126	131	150	197	204	224	
Current [A]	0.60	0.58	0.66	0.91	0.90	0.98	
Maximum air flow [m³/h (l/s)]	2090 (581)	2296 (638)	2485 (690)	2677 (744)	3136 (871)	3350 (931)	
RPM [min ⁻¹]	1350	1400	1470	1320	1390	1446	
Sound pressure at 3 m [dBA]	47	47	49	48	49	51	
Transported air temperature [°C]		-25+55			-25+55		
Protection rating		IPX4			IPX4		
Motor protection rating		IP44			IP44		
Erp compliance		2018			2018		

PRIMO 355

Sound power level,	T-4-	00	Octave frequency bands [Hz]								LpA
A-weighted	Iota	63	125	250	500	1000	2000	4000	8000	3 m	1 m
LwA to inlet [dBA]	69	50	61	63	60	63	60	56	48	49	59
LwA to outlet [dBA]	69	56	61	63	61	65	59	54	48	49	59
LwA to environment [dl	BA] 63	42	49	61	53	57	50	46	35	43	53

PRIMO 400

Sound power level,	•	Total	Octave frequency bands [Hz]								LpA	LpA
A-weighted			63	125	250	500	1000	2000	4000	8000	3 m 1	1 m
LwA to inlet [dBA]		71	57	62	66	65	64	61	55	47	51	61
LwA to outlet [dBA]		73	57	65	63	67	68	63	59	51	52	62
LwA to environment [dBA]	64	45	52	53	57	60	54	48	38	43	53

Parameters	Primo EC 355	Primo EC 355 max	Primo EC 400
Voltage [V / 50 Hz]	1~ 230	1~ 230	1~ 230
Power [W]	346	701	726
Current [A]	1.54	3.10	3.23
Maximum air flow [m³/h (l/s)]	3685 (1024)	4630 (1286)	5700 (1583)
RPM [min ⁻¹]	2470	3175	2580
Sound pressure at 3 m [dBA]	33-63	35-68	33-66
Transported air temperature [°C]	-25+55	-25+55	-25+55
Protection rating	IPX4	IPX4	IPX4
Motor protection rating	IP44	IP44	IP44
Erp compliance	2018	2018	2018

PRIMO EC 355

Sound power level,	Total	Oct	Octave frequency bands [Hz]									
A-weighted V	TOLAL	63	125	250	500	1000	2000	4000	8000	3 m	1 m	
LwA to inlet [dBA]	83	73	76	75	75	78	74	69	61	63	73	
LwA to outlet [dBA]	85	70	79	75	77	81	76	71	64	65	75	
LwA to environment [dBA]	76	56	64	67	70	71	68	63	53	55	65	

2000

500

1000

1500

2500

3000

3500 4000

Air flow [m³/h]

PRIMO EC 355 MAX

Sound power level,		Total	Oct	Octave frequency bands [Hz]								
A-weighted		TOLAL	63	125	250	500	1000	2000	4000	8000	3 m	1 m
LwA to inlet [dBA]		88	74	82	79	79	83	80	75	66	68	78
LwA to outlet [dBA]		90	72	83	79	81	86	82	77	70	70	80
LwA to environment [d	BA]	80	45	63	66	73	77	74	68	57	60	70

2V 3V 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 Air flow [m³/h]

PRIMO EC 400

			0-4				h a u d a	fu_1				
Sound power level, A-weighted	•	Total	63	ave 1 125	250	ency 500	1000	2000	4000	8000	LpA 3 m	LpA 1 m
LwA to inlet [dBA]		87	70	77	78	81	81	79	74	67	66	76
LwA to outlet [dBA]		88	62	76	78	83	84	80	75	66	68	78
LwA to environment [dBA]	80	59	66	69	74	77	72	67	58	60	70
A A	200	400	6		800			1200	Air flov 1400	w [l/s] 1600		
100 3v 0 2v 0	100	00	200	00	300	00	4000	A	5000 ir flow [600 m³/h]	0	
Bood 100 100 100 100 100 100 100 100 100 10	200	400 	6 	000 v 4	800 v 300	10 5 V 200	000 1 7 6V 4000	1200 81 V	Air flov 1400	N [l/s] 1600 10 V 10 V 600 m ³ /h	0	

Turbo EC

Inline mixed flow fans EC motor

Use

- Designed for supply and exhaust ventilation systems requiring high energy efficiency, excellent response, high pressure and air flow rate while keeping noise under control.
- Such supply and extraction ventilation of offices, bathrooms, toilets, laundries, kitchens, ensuites in apartments, hotels, homes, industrial and commercial buildings.
- Compatible with air ducts from 150 to 315 mm in diameter.

ဂျို	Air flow: up to 1995 m³/h 554 l/s
	Power: from 65 W
()	Noise level: from 23 dBA

Design

- Turbo EC fans combine the versatility and outstanding performance of both axial and centrifugal fans, producing a powerful air flow and high pressure while retaining the signature energy efficiency and response of EC motors.
- The casing of Turbo EC fan is made of low combustible polypropylene. The removable central unit with a motor, impeller and terminal box is attached to the fittings by means of special mounting brackets with integral latches. This helps to make the fan maintenance extremely simple and convenient. The fan service no longer requires major disassembly and dismantling of the fan. All you have to do is remove the main unit from the casing and carry out the maintenance as required.
- The inlet fitting has a profiled header which ensures smooth air flow into the fan. Conically shaped impelles with specially profiled blades cause circular velosity rise, that results in air flow boost and pressure increase comparing to conventional design.
- The fan outlet combination of a diffuser, specially designed impeller and rectifier, allow for the optimim air distribution, high air capacity and pressure without excessive noise.

Motor

Designation key

Series

• High efficient direct current EC motor.

Motor type

- EC technology meets the up to date requirements to energy saving and controllable ventilation and provides up to 35 % energy saving as compared to asynchronous motors.
- EC motors ensure totally controllable speed range for the fan and has integrated overheating protection with automatic restart.
- EC motors have no friction and wearing parts as capacitor und brushes. Instead a maintenance free EC controller electronic circuit board is used.
 The impeller is dynamically balanced.
- The fan is compatible with 50 Hz and 60 Hz power mains and the maximum speed does not depend on power mains frequency.
- All motors have a sealed ball bearing motor with a service life of up to 40,000 hours, are 2 speed with an exterior two speed switch.
- All motors have manual reset thermal overload protection as required for inline duct fans AS/NZS60335-2-80:2004.

Wiring

• Comes with a 1.2 m lead, 2 pin plug and external two speed switching.

Speed Control

- The fan speed is controlled with a 0–10 V control signal from the following sources:
- integrated or external speed controller
- controller with sensors
- central BMS system.
- The control signal value changes depending on air temperature, pressure, smoke concentration and other parameters.
- During signal value change the fan with EC motor correspondingly changes the rotations speed and delivers required air volume to the ventilation system.
- The computer central building management systems (BMS) enable integration of several EC motors in network and precise individual operation control for each fan.

Mounting

- The fans are intended for installation in matching diameter air ducts at any point of the ventilation system without limitation to mounting angle.
- The fan casing has a flat mounting plate for a secure wall mounting.
- Electrical connection and installation must be performed in accordance with the instruction manual and the electrical connections diagram applied to the terminal box.
- A single system may have several fans installed in parallel to boost the output capacity or in series to boost the working pressure.

Turbo	EC: electronically commutated m	notor 150; 200; 250; 315				
Accessories						
Filter box	Speed controller	Grilles and cowls	Ducting	Low profile ducting	Backdraft damper	Fire damper
0						

Duct diameter [mm]

Ordering Information

Part Number	Model	Description
BLATURBOEC150	Turbo EC 150	MIXFLO 150 mm FAN EC MOTOR
BLATURBOEC200	Turbo EC 200	MIXFLO 200 mm FAN EC MOTOR
BLATURBOEC250	Turbo EC 250	MIXFLO 250 mm FAN EC MOTOR
BLATURBOEC315	Turbo EC 315	MIXFL0 315 mm FAN EC MOTOR

Overall Dimensions [mm]

Туре	ØD	Ø D1	В	н	L	Weight [kg]
Turbo EC 150	148	187	216.5	253.5	289	2.30
Turbo EC 200	198	209	239	277.5	295.5	3.95
Turbo EC 250	247	257	288	339	383	7.80
Turbo EC 315	308.5	323	360	423	443	11.95

Technical Data

			T F 0.050	T T A A
Parameters	Turbo EC 150	Turbo EC 200	Turbo EC 250	Turbo EC 315
	4 999	4 000	4	4 000
Voltage [V / 50-60 Hz]	1~ 230	1~ 230	1~ 230	1~ 230
Power [W]	55	123	169	284
Current [A]	0.48	1.02	1.38	1.25
Maximum air flow [m³/h (l/s)]	600 (167)	1040 (289)	1285 (357)	1970 (547)
RPM [min ⁻¹]	3390	3390	2870	2826
Sound pressure at 3 m [dBA]	23-50	25-56	28-61	28-61
Transported air temperature [°C]	-25+55	-25+55	-25+55	-25+55
Protection rating	IPX4	IPX4	IPX4	IPX4
SEC class	В	-	-	-
ErP	2018	2018	2018	2018

TURBO EC 150

Sound power level,		Total	Oct	Octave frequency bands [Hz]									
A-weighted	•		63	125	250	500	1000	2000	4000	8000	3 m	1 m	
LwA to inlet [dBA]		70	37	43	58	65	63	65	59	52	50	60	
LwA to outlet [dBA]		68	41	45	52	60	63	63	59	52	47	57	
LwA to environment [d	BA]	67	32	44	59	63	59	58	51	43	46	56	

TURBO EC 200

Sound power level,		Total	Octave frequency bands [Hz]									LpA
A-weighted		Totat	63	125	250	500	1000	2000	4000	8000	3 m	1 m
LwA to inlet [dBA]		76	36	45	57	70	69	72	69	59	56	65
LwA to outlet [dBA]		76	48	49	56	69	71	71	70	60	56	65
LwA to environment [dBA]	69	35	42	54	64	65	65	58	43	49	59

TURBO EC 250

Sound power level, A-weighted rotation Octave frequency bands [Hz] Lus to inlet [dBA] 81 43 51 64 77 77 69 62 61 71 Lwa to inlet [dBA] 81 43 51 64 77 77 77 69 62 61 71 Lwa to outlet [dBA] 81 43 51 64 77 78 77 72 62 61 71 Lwa to environment [dBA] 81 49 54 67 75 78 77 72 62 61 71 Lwa to environment [dBA] 73 53 49 56 66 71 68 55 43 53 63 Openand 50 100 150 200 250 300 350 350 350 350 350 350 350 Openand 50 50 600 800 1000 1200 1000 1200 1000 1200 1000 1000 1000 1000 1000 1000 1000 1000 <th></th>													
Ar-weighted in the interview of the int	Sound power level,	_	Total	Oct	ave f	requ	ency	bands	[Hz]			LpA	LpA
Luxa to inlet [dBA] 81 43 51 64 77 77 77 69 62 61 71 Lwa to outlet [dBA] 73 53 49 56 66 71 68 55 43 53 63	A-weighted	•		63	125	250	500	1000	2000	4000	8000	3 m	'I M
Luxa to environment [dBA] 81 49 54 67 75 78 77 72 62 61 71 Luxa to environment [dBA] 73 53 49 56 66 71 68 55 43 53 63 Air flow [l/s] http://www.air.org/air	LwA to inlet [dBA]		81	43	51	64	77	77	77	69	62	61	71
Luka to environment [dBA] 73 53 49 56 66 71 68 55 43 53 63 Air flow [l/s] $rac{1}{9}$ $rac{1$	LwA to outlet [dBA]		81	49	54	67	75	78	77	72	62	61	71
ir flow [l/s]	LwA to environment	[dBA]	73	53	49	56	66	71	68	55	43	53	63
$ \frac{1}{100} = \frac{1}{100} + 1$									∆ir f	10w [1/	<u>د</u> ا		
Total Total <td< td=""><td>700</td><td>0 5</td><td>50 1</td><td>00</td><td>150</td><td>2</td><td>00</td><td>250</td><td>300</td><td>350</td><td>2]</td><td></td><td></td></td<>	700	0 5	50 1	00	150	2	00	250	300	350	2]		
$ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	[Pa]												
ss y y y y y y y y y y y y y	000 nre	10 V 9 V							(_		
$ \begin{array}{c} $	'essi	8 4								2018			
	료 500 .9	70		-							-		
	Stat	5 V	\mathcal{N}										
$ \begin{array}{c} 300 \\ 200 \\ 200 \\ 200 \\ 400 \\ 600 \\ 800 \\ 1000 \\ 1200 \\ 1$	400		\sim										
$ \begin{array}{c} $	300	44	$\langle \cdot \rangle$	\mathbf{X}							-		
$ \begin{array}{c} 200 \\ 2v \\ 100 \\ 0 \\ 0 \\ 200 \\ 200 \\ 400 \\ 600 \\ 800 \\ 1000 \\ 1200 \\ 1200 \\ 1200 \\ 100 \\$	200	30	\sim	1	\sim								
$ \begin{array}{c} 100 \\ 0 \\ 0 \\ 200 \\ 200 \\ 400 \\ 600 \\ 800 \\ 1000 \\ 1200 \\ 100 \\ 120 \\ 100 \\ $	200	2V	\leq		\leq						_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100		\sim		\sim		$\langle \cdot \rangle$				_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-	\geq	\mathcal{N}	\sim	$\langle \rangle \rangle$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0 :	200	400	6	00	800) 100	0 12	00 1	400		
Air flow [1/s]									Air flo	w [m³/l	ו] י		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 1	50 1	00	150	2	00	250	Air f	low [l/:	sj		
100 120 100 120 100 120 120 120	E ²⁰⁰			00	150	2	00	230	500	3.50			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	160 Not									9V	v		
40 40 0 0 0 0 0 0 0 0 0 0 0 0 0	6 120								6 V	v	_		
40 0 0 0 0 0 200 400 600 800 1000 1200 1400	80							4 V	5 V		_		
0 200 400 600 800 1000 1200 1400	40					2	- 3 V	v					
	0	0	200	400	6	00	800) 100)0 12	00 1	400		

1000 1200 1400 Air flow [m³/h]

TURBO EC 315

Sound power level,	Total	Octave frequency bands [Hz]									LpA
A-weighted 🔻 🔻		63	125	250	500	1000	2000	4000	8000	3 m	1 m
LwA to inlet [dBA]	81	42	54	64	74	78	75	70	63	61	70
LwA to outlet [dBA]	83	43	54	72	77	78	78	73	66	63	72
LwA to environment [dBA]	75	37	48	60	68	73	68	60	48	55	65

Iso-Mix

Sound insulated inline mixed flow fans

Use

- Supply and extract ventilation systems installed in various premises requiring low noise level.
- For ventilation air ducts requiring high pressure, powerful air flow and low noise level.
- \bullet Compatible with Ø 150 up to Ø 315 mm air ducts.

Î	up to 1920 m³/h 533 l/s
	Power: from 45 W

Air flow:

Design

- The casing is made of polymer coated steel, internally filled with 50 mm mineral wool thermal- and sound-insulating layer.
- Special inner perforation of the casing and sound insulating material are designed for wide frequency sound absorbing.
- Mixed flow impeller made of high quality plastic.
- The diffusor, the specially profiled impeller and directing vanes provide high performance and powerful pressure combined with low noise operation.
 External airtight terminal block on the fan casing for power supply.
- Mounting brackets on the fan casing for mounting to the floor, to the wall or ceiling.

Motor

INLINE FANS

- 220-240 V single phase at 50 Hz.
- All motors have a sealed ball bearing motor with a service life of up to 40 000 hours, are 2 speed with an exterior two speed switch and can be fitted with a speed controller.
- All motors have manual reset thermal overload protection as required for inline duct fans AS/NZS60335-2-80:2004.

Wiring

• All fans come standard with a 1.2 m lead, 2 pin plug and external two speed switching.

Mounting

- Due to its compact design the fan is the ideal solution for mounting in limited spaces.
- The fan is suitable for mounting in any section of the ventilation system from intake to the end of the ductwork.

Ordering Information

Part Number	Model	Description
BLATURBO150MIX	Iso-Mix 150	MIXFL0 150 mm 2 SPEED FAN - SILENT SERIES
BLATURBO200MIX	Iso-Mix 200	MIXFLO 200 mm 2 SPEED FAN - SILENT SERIES
BLATURBO250MIX	Iso-Mix 250	MIXFLO 250 mm 2 SPEED FAN - SILENT SERIES
BLATURBO315MIX	Iso-Mix 315	MIXFLO 315 mm 2 SPEED FAN - SILENT SERIES

Accessories						
Filter box	Speed controller	Grilles and cowls	Ducting	Low profile ducting	Backdraft damper	Fire damper
0						

Overall Dimensions [mm]

Туре	ØD	В	B1	L	н	Weight [kg]
lso-Mix 150	148	247	273	579	263	6.1
Iso-Mix 200	198	293	386	550	295	8
Iso-Mix 250	248	358	445	658	360	15
Iso-Mix 315	313	432	520	780	434	25

Iso-Mix 200 / Iso-Mix 250 / Iso-Mix 315

Technical Data

Parameters	Iso-M	ix 150	Iso-Mix 200		
Speed	min	max	min	max	
Voltage [V]	1~	230	1 ~ 230		
Frequency [Hz]	50/	/60	50/60		
Power [W]	45	52	78	110	
Current [A]	0.20	0.23	0.35	0.49	
Maximum air flow [m³/h (l/s)]	410 (114)	550 (153)	790 (219)	1035 (288)	
RPM [min ⁻¹]	1985	2640	2000	2460	
Sound pressure at 3 m [dBA]	38	43	41	44	
Max. transported air temperature [°C]	+6	50	+(50	
SEC class	(2	()	
IP rating	IP	X4	IP	X4	
Motor IP rating	IP	44	IP44		
ErP	20	18	2018		

ISO-MIX 150

Sound power level,	Total	Octave frequency bands [Hz]							LpA	LpA		
A-weighted	IOLAL	63	125	250	500	1000	2000	4000	8000	3 m	1 m	1 m
Min speed												
LwA to inlet [dBA]	59	32	49	55	53	52	38	28	15	38	48	
LwA to outlet [dBA]	61	35	40	44	60	52	44	44	29	40	50	
LwA to environment [dBA]	47	37	40	41	40	38	29	22	19	26	36	
Max speed												
LwA to inlet [dBA]	63	34	53	60	57	56	41	30	17	43	53	
LwA to outlet [dBA]	64	37	42	46	64	56	46	46	30	44	54	
LwA to environment [dBA]	53	44	47	48	47	45	34	26	23	33	43	

ISO-MIX 200

Sound power level,	Total	Octave frequency bands [Hz]							LpA	LpA	
A-weighted	IOLAL	63	125	250	500	1000	2000	4000	8000	3 m	1 m
Min speed											
LwA to inlet [dBA]	61	33	52	58	55	54	39	30	16	41	51
LwA to outlet [dBA]	61	42	45	52	55	57	52	45	35	40	50
LwA to environment [dBA]	51	40	46	46	44	41	37	35	30	31	41
Max speed											
LwA to inlet [dBA]	65	35	55	61	59	57	42	31	17	44	54
LwA to outlet [dBA]	66	38	44	48	66	57	48	48	31	46	56
LwA to environment [dBA]	57	44	52	52	49	45	41	39	34	36	46

Parameters	Iso-M	ix 250	Iso-Mix 315		
Speed	min	max	min	max	
Voltage [V]	1~	230	1 ~ 230		
Frequency [Hz]	50/	60	50/60		
Power [W]	127	178	230	330	
Current [A]	0.52	0.79	0.93	1.41	
Maximum air flow [m³/h (l/s)]	1035 (288)	1315 (365)	1510 (419)	1920 (533)	
RPM [min ⁻¹]	1960	2460	2120	2620	
Sound pressure at 3 m [dBA]	45	49	46	49	
Max. transported air temperature [°C]	+6	0	+60		
SEC class	-	-	-		
IP rating	IP	IP>	(4		
Motor IP rating	IP4	44	IP4	14	
ErP	20	18	2018		

ISO-MIX 250

Sound power level,	Tetal	Octave frequency bands [Hz]							LpA	LpA	
A-weighted	IOLAL	63	125	250	500	1000	2000	4000	8000	3 m	1 m
Min speed											
LwA to inlet [dBA]	66	36	56	63	60	59	43	32	17	45	55
LwA to outlet [dBA]	64	37	42	46	63	55	46	46	30	43	53
LwA to environment [dBA]	55	44	48	51	47	44	37	31	25	34	44
Max speed											
LwA to inlet [dBA]	69	38	59	66	63	62	45	34	18	49	59
LwA to outlet [dBA]	75	43	50	54	74	65	54	54	36	54	64
LwA to environment [dBA]	58	47	49	53	53	49	44	39	31	38	48

ISO-MIX 315

Sound power level,	Tetel	Octave frequency bands [Hz]								LpA	LpA
A-weighted	Iotal	63	125	250	500	1000	2000	4000	8000	3 m	1 m
Min speed											
LwA to inlet [dBA]	67	36	57	63	61	59	43	32	18	46	56
LwA to outlet [dBA]	71	50	54	62	66	67	62	54	42	51	61
LwA to environment [dBA]	56	47	47	52	50	45	41	37	29	36	46
Max speed											
LwA to inlet [dBA]	70	38	60	67	64	62	45	34	18	49	59
LwA to outlet [dBA]	75	53	56	66	69	71	66	56	44	54	64
LwA to environment [dBA]	60	51	52	54	55	50	46	43	35	40	50

Iso-Mix EC

Sound insulated inline mixed flow fans with EC motor

Use

- Combined supply and exhaust ventilation systems of various commercial and industrial spaces with stringent noise requirements (such as libraries, conference halls, school classrooms, offices).
- For ventilation air ducts requiring high pressure, powerful air flow and low noise level.
- Compatible with \varnothing 150 up to \varnothing 315 mm air ducts.

ဂျို	Air flow: up to 1970 m³/h 547 l/s
	Power: from 55 W
()	Noise level:

Features

- The new series of Iso-Mix EC duct fan series is provided with a special sound insulated casing which ensures silent operation and excellent aerodynamic characteristics.
- Iso-Mix EC fans combine the versatility and outstanding performance of both axial and centrifugal fans producing a powerful air flow and high pressure while retaining the signature energy efficiency and response of EC motors.
- Several fans can be integrated into a single computer controlled system with sensor feedback combined with speed control across the entire dynamic range.

Design

- The external casing is made of steel with a polymer coating.
- The internal casing perforations conduct sound waves and direct them at the noise absorbing material at a specific angle. Noise and heat insulation is ensured by a mineral wool layer 50 mm in thickness. Wideband noise control is achieved by means of special casing perforation and the use of noise absorbing material.
- The inner casing and the impeller are made of durable high quality plastic.
- Conical impellers with specially profiled blades help boost angular velocity of the air flow resulting in higher pressure and air capacity compared to the conventional designs. The combination of a diffuser, a specially designed impeller and flow straightener vanes at the fan outlet allow, for an optimum flow distribution to achieve high capacity and increased air pressure without generating excessive noise.
- The fan casing is equipped with an external water tight terminal box for electrical connections.

Motor

Designation key Series

lso-Mix

• High efficient direct current EC motor.

Motor type

- EC technology meets the up to date requirements to energy saving and controllable ventilation and provides up to 35 % energy saving as compared to asynchronous motors.
- EC motors ensure totally controllable speed range for the fan and has integrated overheating protection with automatic restart.

EC: electronically commutated motor

- EC motor has no friction and wearing parts as capacitor und brushes. Instead a maintenance free EC controller electronic circuit board is used.
- The impeller is dynamically balanced.
- The fan is compatible with 50 Hz and 60 Hz power mains and the maximum speed does not depend on power mains frequency.
- All motors have a sealed ball bearing motor with a service life of up to 40 000 hours, are 2 speed with an exterior two speed switch and can be fitted with a speed controller.
- All motors have manual reset thermal overload protection as required for inline duct fans AS/NZS60335-2-80:2004.

Speed Control

- The fan speed is controlled with a 0–10 V control signal from the following sources:
 - integrated or external speed controller
 - controller with sensors
- central BMS system.
 The control signal value changes depending on air temperature, pressure, smoke concentration and other parameters.
- During signal value change the fan with EC motor correspondingly changes the rotations speed and delivers required air volume to the ventilation system.
- The computer central building management systems (BMS) enable integration of several EC motors in network and precise individual operation control for each fan.

Mounting

- The fans are designed to be used with round air ducts.
- The fan casing has mounting brackets for convenient installation onto the floor, walls or ceiling. The ducts can be fitted at any angle relative to the fan axis.
- Make sure to provide sufficient maintenance access during fan installation. Electrical connection and installation must be performed in accordance with the instruction manual and the electrical connections diagram applied to the terminal box.
- A single system may have several fans installed in parallel to boost the output capacity or in series to boost the working pressure.

Spigot diameter [mm] 150; 200; 250; 315

Ordering Information

Part Number	Model	Description
	1 10 50 150	
BLATURBOEC150MIX	Iso-Mix EC 150	MIXELO 150 mm FAN EC MOTOR - SILENT SERIES
BLATURBOEC200MIX	Iso-Mix EC 200	MIXELO 200 mm EAN EC MOTOR - SILENT SERIES
DEATONDOLCZOOMIX	130 WIX LC 200	MIXI LO 200 IIIII TAN LO MOTOR SILLINT SERIES
BLATURBOEC250MIX	Iso-Mix EC 250	MIXFLO 250 mm FAN EC MOTOR - SILENT SERIES
BLATURBOEC315MIX	Iso-Mix EC 315	MIXFL0 315 mm FAN EC MOTOR - SILENT SERIES

Overall dimensions [mm]

Туре	ØD	В	B1	н	L
Iso-Mix EC 150	147	273	314	264	579
Iso-Mix EC 200	198	343	393	296	558
Iso-Mix EC 250	248	402	452	363	664
Iso-Mix EC 315	313	478	528	455	785

BLAUBERG

Technical Data

Parameters	Iso-Mix EC 150	Iso-Mix EC 200	Iso-Mix EC 250	Iso-Mix EC 315
Voltage [V / 50 Hz]	1 ~ 230	1 ~ 230	1 ~ 230	1 ~ 230
Power [W]	55	123	169	284
Current [A]	0.48	1.02	1.38	1.25
Maximum air flow [m³/h (l/s)]	600 (167)	1040 (289)	1285 (357)	1970 (547)
RPM [min ⁻¹]	3390	3390	2870	2826
Sound pressure at 3 m [dBA]	20-41	22-48	24-50	26-52
Transported air temperature [°C]	-25+55	-25+55	-25+55	-25+55
IP rating	IPX4	IPX4	IPX4	IPX4
Motor IP rating	В	-	-	-
ErP	2018	2018	2018	2018

ISO-MIX EC 150(160)

Sound power level,	Total	Octa	Octave frequency bands [Hz]								
A-weighted 🔻		63	125	250	500	1000	2000	4000	8000	3 m 1	1 m
LwA to inlet [dBA]	61	45	58	58	41	37	33	30	23	41	51
LwA to outlet [dBA]	58	47	58	46	43	39	32	27	20	38	48
LwA to environment [dBA]	58	48	48	50	57	45	43	36	30	38	48

ISO-MIX EC 200

Sound power level,	Total	Octa	Octave frequency bands [Hz]								LpA
A-weighted 🗸 🔻	TOLAL	63	125	250	500	1000	2000	4000	8000	3 m	1 m
LwA to inlet [dBA]	68	37	47	57	63	63	62	61	55	48	58
LwA to outlet [dBA]	70	42	50	59	64	66	64	63	58	50	60
LwA to environment [dBA]	63	31	43	53	61	56	53	47	37	43	52

ISO-MIX EC 250

Sound power level, A-weighted	Total	0Cta	ave fr 125	eque	ncy D	ands [F	1Z] 2000	4000	8000	LpA 3 m	LpA 1 m
g		05	123	230	500	1000	2000	4000	0000		
LwA to inlet [dBA]	70	45	48	60	66	65	63	58	52	50	60
LwA to outlet [dBA]	74	46	54	62	70	69	66	63	56	54	64
LwA to environment [dBA]	63	40	45	52	60	57	51	43	31	42	52
							Air	flow []/	s]		
700,0	50	100	15	50	200	250	300	350	21		
[Fa]											
an 600							(_		
ess ess							· ·	2018			
				_					_		
Stat	$\backslash / $										
400 50		\mathbb{N}									
300	\searrow	$\langle \rangle$							_		
3V	\checkmark			T							
200 20	\checkmark			\geq	Ś				_		
100			\sim		\sim						
100				\sim	\searrow	\backslash					
0	200	4.0	10	600		0 100	10 1	200 1	400		
0	200	40	0	000	001	0 100	Air flo	w [m³/	h]		
							Air	flow [l/	s]		
S 200	50	100	15	50	200	250	300	350	_		
<u>ຂ</u> 160								10 9 V	v		
300 120								8V	_		
80							6 V		_		
60						4 V			_		
40					2 V				-		
0	200	40	0	600	80	0 100	00 12 Air flo	200 1	400 bl		

ISO-MIX EC 315

Sound power level,	Total	Octa	Octave frequency bands [Hz]								
A-weighted 🛛 🔻	Iotat	63	125	250	500	1000	2000	4000	8000	3 m	1 m
LwA to inlet [dBA]	72	41	55	64	65	70	65	63	55	52	62
LwA to outlet [dBA]	77	52	61	67	74	71	69	67	62	57	66
LwA to environment [dBA]	66	33	48	58	60	63	57	50	38	46	55
							Air 1	low [l/	sl		

Centro Inline centrifugal fans

Use

- Supply and extraction ventilation of offices, bathrooms, toilets, laundries, kitchens, ensuites in apartments, hotels, homes and commercial buildings.
- Compatible with \oslash 150 up to 315 mm round air ducts.

ဂျိ	Air flow: up to 1700 m³/h 472 l/s
ш	Power:

Noise level:

from 65 dBA

from 80 W

Design

- High quality durable plastic casing.
- Aerodynamically shaped casing.
- Airtight mounting box.

Motor

- 220–240 V single phase at 50 Hz.
- All motors have a sealed ball bearing motor with a service life of up to 40,000 hours.
- All motors have manual reset thermal overload protection as required for inline duct fans AS/NZS60335-2-80:2004.

Wiring

- All fans come standard with a 1.2 m lead and 2 pin plug.
- Fans can be speed controlled.

Mounting

- Due to compact design the fan is the ideal solution for mounting in limited spaces.
- Any mounting position.
- Wall or ceiling mounting with fixing brackets supplied as a standard.
- Flexible air ducts are fixed on the fan spigots.

				Orderin	g Info	rmation				
				Part Number		Model		Description		
				BLACENTRO15	0	Centro 150		INLINE FAN C	ENTRIFUGAL	150 mm
				BLACENTRO20	0	Centro 200		INLINE FAN C	ENTRIFUGAL	200 mm
Designation key				BLACENTRO25	0	Centro 250		INLINE FAN C	ENTRIFUGAL	250 mm
Series	Duct diameter [mm]	Motor modifications		BLACENTRO31	5	Centro 315		INLINE FAN C	ENTRIFUGAL	315 mm
Centro	150; 200; 250; 315	max: high powered motor		BLACENTRO31	5MAX	Centro 315 max	(INLINE FAN C	ENTRIFUGAL	315 mm
Accessories										
Filter box	Speed controller	Grilles and cowls	I	Ducting	Low pr	ofile ducting	Backdr	aft damper	Fire d	amper
0										

INLINE FANS

blaubergventilation.com.au

Overall Dimensions [mm]

Туре	ØD	Ø D1	В	L	ព	L2	L3	Weight [kg]
Centro 150	150/160	300	310	286	30	30	30	2.45
Centro 200	200	340	354	276	30	30	40	3.00
Centro 250	250	340	354	265	30	30	40	4.30
Centro 315	315	400	414	276	40	55	40	4.85
Centro 315 max	315	400	414	276	40	55	40	4.85

Technical Data

Parameters	Centr	o 150	Centr	o 200	
Voltage [V]	1 ~	230	1 ~ 230		
Frequency [Hz]	50	60	50	60	
Power [W]	80	84	107	132	
Current [A]	0.35	0.37	0.47	0.58	
Maximum air flow [m³/h (l/s)]	460 (128)	505 (140)	780 (217)	890 (247)	
RPM [min ⁻¹]	2725	2840	2660	2765	
Sound pressure at 3 m [dBA]	69	69	65	65	
Max. transported air temperature [°C]	-25+55	-25+50	-25+55	-25+50	
SEC class	В	-	В	-	
IP rating	IP	X4	IP	X4	
Motor IP rating	IP.	44	IP	44	
ErP	20	18	20	18	

CENTRO 150

Sound power level, A-weighted	Total	Oct	Octave frequency bands [Hz]								LpA
		63	125	250	500	1000	2000	4000	8000	3 m 1	1 m
LwA to inlet [dBA]	90	53	87	86	75	74	71	68	54	69	79
LwA to outlet [dBA]	90	53	88	85	72	71	66	65	52	69	79
LwA to environment [dBA]	63	26	46	55	57	57	57	47	35	42	52

CENTRO 200

Sound power level, A-weighted	Total	Oct	Octave frequency bands [Hz]								
		63	125	250	500	1000	2000	4000	8000	3 m 1	1 m
LwA to inlet [dBA]	85	47	74	81	77	77	78	70	59	65	75
L _{wA} to outlet [dBA]	83	44	73	77	75	75	78	70	60	63	73
LwA to environment [dBA]	66	27	48	59	61	61	59	51	39	46	56

Parameters	Centro 250		Centro 315	Centro 315 max
Voltage [V]	1~	230	1 ~ 230	1 ~ 230
Frequency [Hz]	50	60	50	50
Power [W]	173	207	200	310
Current [A]	0.76	0.9	0.88	1.36
Maximum air flow [m³/h (l/s)]	1080 (300)	1090 (303)	1340 (372)	1700 (472)
RPM [min ⁻¹]	2090	2120	2655	2590
Sound pressure at 3 m [dBA]	70	70	66	73
Max. transported air temperature [°C]	-25+55	-25+50	-25+55	-25+45
SEC class	В	-	-	-
IP rating	IPX4		IPX4	IPX4
Motor IP rating	IP	44	IP44	IP44
ErP	20	18	2018	2018

CENTRO 250

Sound power level,	Total	Oct	Octave frequency bands [Hz]							LpA	LpA
A-weighted		63	125	250	500	1000	2000	4000	8000	3 m	1 m
LwA to inlet [dBA]	90	61	78	85	83	85	81	77	65	70	80
LwA to outlet [dBA]	88	64	77	73	82	84	82	77	63	68	78
LwA to environment [dBA]	69	35	49	61	64	64	62	50	39	49	59

CENTRO 315, CENTRO 315 MAX

Sound power level,	Total	Octave frequency bands [Hz]						LpA	LpA		
A-weighted	TOLAL	63	125	250	500	1000	2000	4000	8000	3 m	1 m
Centro 315											
LwA to inlet [dBA]	86	51	73	71	75	81	82	77	68	66	76
LwA to outlet [dBA]	87	55	66	76	73	81	84	77	69	66	76
LwA to environment [dBA]	69	30	48	59	63	65	62	52	38	48	58
Centro 315 max											
LwA to inlet [dBA]	93	56	80	78	82	88	89	84	74	73	83
LwA to outlet [dBA]	93	59	72	82	79	87	90	83	75	72	82
LwA to environment [dBA]	78	33	54	63	71	73	73	63	55	57	67

Centro EC

Inline centrifugal fans with EC motor

Use

- Supply and extraction ventilation and air conditioning systems of various premises requiring cost saving controllable ventilation.
- Supply and extraction ventilation of offices, bathrooms, toilets, laundries, kitchens, ensuites in apartments, hotels, homes and commercial buildings.
- Compatible with ∅ 150 up to 315 mm round air ducts.

ဂျို	Air flow: up to 1500 m³/h 417 l/s
11	Power:
J	from 82 W

Design

- Durable, impact resistant and corrosion free ABS-plastic casing.
- Aerodynamically shaped casing.
- Airtight terminal box for connection to power mains.

Motor

- High efficient direct current EC motor with external rotor and backward curved blades.
- EC technology meets the up to date requirements to energy saving and controllable ventilation and provides up to 35 % energy saving as compared to asynchronous motors.
- EC motors ensure totally controllable speed range for the fan and has integrated overheating protection with automatic restart.
- EC motors have no friction and wearing parts as capacitor und brushes. Instead a maintenance free EC controller electronic circuit board is used.
 The impeller is dynamically balanced.
- The fan is compatible with 50 Hz and 60 Hz power mains and the maximum speed does not depend on power mains frequency.
- All motors have a sealed ball bearing motor with a service life of up to 40 000 hours, are 2 speed with an exterior two speed switch and can be fitted with a speed controller.
- All motors have manual reset thermal overload protection as required for inline duct fans AS/NZS60335-2-80:2004.

Wiring

• Comes with a 1.2 m lead, 2 pin plug.

Speed Control

- The fan speed is controlled with a 0–10 V control signal from the following sources:
 - integrated or external speed controller
 - controller with sensors
 - central BMS system.
- The control signal value changes depending on air temperature, pressure, smoke concentration and other parameters.
- During signal value change the fan with EC motor correspondingly changes the rotations speed and delivers required air volume to the ventilation system.
- The computer central building management systems (BMS) enable integration of several EC motors in network and precise individual operation control for each fan.

Mounting

- The fans are designed for duct mounting in any point of the ventilation system with the casing mounted at any angle. In case of vertical mounting a protective outer hood must be installed on the top.
- Fixation to the floor wall or ceiling is performed with the supplied mounting brackets.
- Electric connection and installation must be performed in compliance with the manual and the wiring diagram on the terminal box.

Mounting bracket for easy installation supplied with the fan

Lenns (BMS) enable inte-	Series	Motor	Spigot diameter [mm]			
ise individual operation	Centro	EC: electronically commutated motor	150; 200; 250; 315			

Designation key

INLINE FANS

Ordering Information

Part Number	Model	Description
BLACENTROEC150	Centro EC 150	INLINE FAN CENTRIFUGAL 150 mm EC MOTOR
BLACENTROEC200	Centro EC 200	INLINE FAN CENTRIFUGAL 200 mm EC MOTOR
BLACENTROEC250	Centro EC 250	INLINE FAN CENTRIFUGAL 250 mm EC MOTOR
BLACENTROEC315	Centro EC 315	INLINE FAN CENTRIFUGAL 315 mm EC MOTOR

Overall Dimensions [mm]

Model	ØD	Ø D1	В	L	L1	L2	L3	Weight [kg]
Centro EC 150	150/160	300	310	286	30	30	30	2.5
Centro EC 200	200	340	354	276	30	30	40	3
Centro EC 250	250	340	354	265	30	30	40	4.3
Centro EC 315	315	400	414	276	40	55	40	4.9

Technical Data

Parameters	Centro EC 150	Centro EC 200	Centro EC 250	Centro EC 315
Voltage [V]	1 ~ 230	1 ~ 230	1 ~ 230	1 ~ 230
Frequency [Hz]	50	50	50	50
Power [W]	82	84	165	165
Current [A]	0.63	0.64	1.1	1.15
Maximum air flow [m³/h (l/s)]	630 (175)	885 (246)	1250 (347)	1500 (417)
RPM [min ⁻¹]	3400	2700	2600	2500
Sound pressure level at 3 m [dBA]	30-72	29-67	32-69	32-69
Transported air temperature [°C]	-25+60	-25+60	-25+60	-25+60
SEC class	В	В	-	-
IP rating	IPX4	IPX4	IPX4	IPX4
Motor IP rating	IP44	IP44	IP44	IP44
ErP	2018	2018	2018	2018

CENTRO EC 150

Sound power level, Total	Total	Octave free	quency band	In4.2 m	1 n 4 1 m						
	Iotat	63	125	250	500	1000	2000	4000	8000	сря з пі	LpA TIII
LwA to inlet [dBA]	93	55	90	89	77	76	73	70	56	72	82
LwA to outlet [dBA]	93	55	91	88	74	73	68	67	54	72	82
LwA to environment [dBA]	66	26	48	58	61	60	59	51	39	45	55

Point	Power [W]	Point	Power [W]
1	82	11	31
2	82	12	27
3	82	13	17
4	82	14	17
5	54	15	17
6	57	16	16
7	53	17	9
8	49	18	9
9	32	19	8
10	33	20	8

CENTRO EC 200

Sound power level,	Total	Octave free	quency band	s [Hz]						LpA 3 m LpA 1 m	InA 1 m
A-weighted	Iotat	63	125	250	500	1000	2000	4000	8000		срятт
LwA to inlet [dBA]	87	48	76	84	79	79	80	72	61	67	77
LwA to outlet [dBA]	85	45	75	79	77	77	80	72	62	64	74
LwA to environment [dBA]	67	27	49	60	62	61	60	52	39	47	57

Point	Power [W]	Point	Power [W]
1	84	11	32
2	84	12	31
3	83	13	16
4	82	14	18
5	51	15	18
6	54	16	17
7	58	17	8
8	55	18	8
9	28	19	9
10	32	20	8

INLINE FANS

CENTRO EC 250

Sound power level,	Octave frequency bands [Hz]						1 = 4.2 ==	1 = 0.1 ==			
A-weighted	IULAL	63	125	250	500	1000	2000	4000	8000	сря з пі	сратти
LwA to inlet [dBA]	89	60	77	84	82	84	80	76	64	69	79
LwA to outlet [dBA]	87	63	76	72	81	83	81	76	62	67	77
LwA to environment [dBA]	68	30	49	58	62	65	61	52	38	48	58

Point	Power [W]	Point	Power [W]
1	152	11	89
2	161	12	78
3	165	13	37
4	154	14	40
5	121	15	43
6	131	16	38
7	140	17	16
8	125	18	17
9	76	19	18
10	83	20	16

CENTRO EC 315

Sound power level,	Tatal	Octave frequency bands [Hz]							1 = 1 2 =	1 = 4.1 ==	
A-weighted	63	125	250	500	1000	2000	4000	8000	Lpa 3 m	цратт	
LwA to inlet [dBA]	86	51	73	71	75	81	82	77	68	66	76
LwA to outlet [dBA]	87	55	66	76	73	81	84	77	69	67	77
LwA to environment [dBA]	69	30	48	56	62	64	64	56	49	48	58

Point	Power [W]	Point	Power [W]
1	149	11	90
2	164	12	84
3	165	13	37
4	158	14	39
5	94	15	45
6	106	16	41
7	112	17	17
8	104	18	19
9	74	19	19
10	83	20	17

Ducto

Inline fans

Use

- Low noise axial inline fans for exhaust or supply ventilation with superior capacity up to 340 m³/h.
- Designed for PVC ducting systems or flexible ducts.
- From low to medium air flow motion for short distances at low air resistance.
- \bullet Compatible with Ø 100, 125 and 150 mm air ducts.

ဂျို	Air flo up to	5w: 340 m³/h 94 l/s
پ	Powe from	r: 7.5 W

Design

- The casing and the impeller are made of high quality durable plastic.
- Specially designed mixed flow impeller profile ensures high air flow and low noise level.
- Low energy usage from 7.5 W.
- The models of Blauberg Ducto Series are equipped with a single-phase motor.
- The motor has thermal overheating protection for motor overload prevention.
- Motor on special anti-vibration connectors.

Control

RESIDENTIAL FANS

- Manual speed control with a room light switch. It is not included in the delivery package.
- Smooth speed control with a thyristor speed controller (see Accessories).
- Several fans may be connected to the same controller. The models with timer are not compatible with a speed controller.

Wiring

• Comes with a 1.2 m lead, 2 pin plug.

Overall Dimensions and Mounting

- The fan is mounted into a matching duct size. Fastening with clamps in case of flexible duct connection.
- The mounting bracket enables installation of the fan on horizontal and vertical flat surfaces.
- Two fans can be installed in series for higher operation pressure.

Ducto Kit

- The Ducto loft mounted extractor fan kit is an all in one extraction system for exhaust ventilation of bathrooms, showers, wet rooms and other utility spaces.
- Consist: Ducto 150 fan, flexible air duct 10 m., internal round plastic grille, external square plastic grille, adhesive tape.

			Ord	ering Inf	ormation		
			Part Nu	mber	Model	Description	
			BLADU	CTO100	Ducto 100	INLINE AXIAL	FAN 100 mm
Designation ke	≥y		BLADU	CTO125	Ducto 125	INLINE AXIAL	FAN 125 mm
Series	Spigot diameter	Options	BLADU	CTO150	Ducto 150	INLINE AXIAL	FAN 150 mm
Ducto	100; 125; 150	W1	BLABD	јстокіт	Ducto 150 Kit	INLINE AXIAL	FAN 150 mm KIT
Accessories							
Filter box	x Speed controller	Grilles and cowls	Ducting	Low	profile ducting	Backdraft damper	Fire damper
0	E.C.						

Overall Dimensions [mm]

Туре	ØD	L	к	Weight [kg]
Ducto 100	100	137.5	53.5	0.61
Ducto 125	125	161.5	53.5	0.75
Ducto 150	150	181.5	53.5	1.3

Technical Data

Model	Ducto 100	Ducto 125	Ducto 150
Voltage [V]	220-240	220-240	220-240
Frequency [Hz]	50	50	50
Power [W]	7.5	13	22
Current [A]	0.049	0.085	0.095
Air flow [m³/h (l/s)]	110 (31)	215 (60)	340 (94)
RPM [min ⁻¹]	2100	2250	2250
Noise level [dBA]	25	33	39

Bravo Exhaust fans

Features

- Wall and ceiling mounting
- Low noise impeller
- Easy maintenance
- Continuous operation
- Backdraft damper
- Ball bearing motor
- 5 year warranty

ဂျို	Air flow: up to 305 m³/h 85 l/s
	Power:
J	from 14 W
	SFP:
	from 0.28 W/I/s
	Noise level: from 35 dBA

Overall Dimensions and Mounting

Dimensions [mm]	a	b	c	Ød	е
Bravo 100	150	122	102	100	17
Bravo 125	176	144	104	125	17
Bravo 150	205	174	124	150	19

Technical Data

Model	Bravo 100	Bravo 125	Bravo 150
Voltage [V/Hz]	220-240/50	220-240/50	220-240/50
Power [W]	14	16	24
Current [A]	0.085	0.1	0.13
RPM [min ⁻¹]	2300	2400	2400
Air flow [m³/h (l/s)]	101 (28)	192 (53)	305 (85)
SFP [W/l/s]	0.5	0.3	0.28
Noise level [dBA]	35	37	39

Ordering Information

Part Number	Model	Description
BLABBRAVO100	Bravo 100	WALL/CEILING FAN 100 mm
BLABBRAVO125	Bravo 125	WALL/CEILING FAN 125 mm
BLABBRAVO150	Bravo 150	WALL/CEILING FAN 150 mm

Accessories

Flexible air ducts

Grilles and cowls

RESIDENTIAL FANS

Quatro

Exhaust fans with decorative front panel

 Features
 Image: Construction

 • Wall and ceiling mounting.

 • Easy maintenance.

 • Low noise impeller.

 • Continuous operation.

 • Backdraft damper.

 • Ball bearing motor.

 • 5 year warranty.

ဂျို	Air flow: up to 265 m³/h 74 l/s
#	Power: from 24 W SFP: from 0.33 W/I/s
	Noise level: from 37 dBA

Overall Dimensions and Mounting

Technical Data

Model	Quatro 150
Voltage [V/Hz]	220-240/50
Power [W]	24
Current [A]	0.13
RPM [min ⁻¹]	2400
Air flow [m³/h (l/s)]	265 (74)
SFP [W/l/s]	0.33
Noise level [dBA]	37

Ordering Information

Part Number	Model	Description
BLABQUATRO150	Quatro 150	WALL FAN 150 mm STANDARD WHITE

RESIDENTIAL FANS

Wind Window exhaust fans

ဂျို	Air flow: up to 295 m³/h 82 l/s
	Power: from 26 W SFP: from 0.32 W/I/s
	Noise level: from 41 dBA

Overall Dimensions and Mounting

Dimensions [mm]	a	b	е	c	D
Wind 150	210	195	66	60	150

Technical Data

Model	Wind 150
Voltage [V/Hz]	220-240/50
Power [W]	26
Current [A]	0.13
RPM [min ⁻¹]	2400
Air flow [m³/h (l/s)]	295 (82)
SFP [W/l/s]	0.32
Noise level [dBA]	41

Ordering Information

Part Number Mo	odel	Description
BLABWIND150 Win	nd 150	WALL FAN 150 mm FOR GLASS WITH AUTO SHUTTERS

BLA920N

Header Box Fan

Features

- The Blauberg **BLA920N** offer superior performance in header box fan design with superior performance, low height profile, low noise, good airflow and high pressure.
- Blauberg header box fans are designed for contractors and developers who are looking for quality header box fans with good performance and fast efficient installation times.
- Quick install screw down clips that lock down onto the ceiling provide a fast installation process and a tidy finish, with a clip mounted grille providing a tight secure fit to the ceiling.
- Extraction of air from bathrooms, kitchens, ensuites, toilets, laundries and apartments.

Design

• Centrifugal side discharge fan, low noise and backdraft damper, made from high quality ABS plastic housing with an injection moulded plastic pure white grille.

Motor

• 240 V single phase at 50 Hz. All motors have a sealed NSK ball bearing motor with a service life of up to 20,000 hours and come with a thermal overload fuse that cannot be reset.

Wiring

• 1.0 m lead and 2 pin plug.

Ordering Information

Part Number	Description
BLA920N	Header Box Fan with 125 mm or 150 mm Side Duct Outlet

Overall Dimensions [mm]

Model	A	в	C	D	E
BLA920N	140	150	155	275	320

Technical Data

Model	BLA920N
Voltage [V/Hz]	220-240/50
Power [W]	30
Current [A]	0.15
Extract capacity [m³/h]	234
Noise level [dBA]	41
RPM [min ⁻¹]	1150
Installation type	Ceiling
Installation position	Ceiling
DN (diameter nominal) [mm]	125/150
Air flow temperature [°C]	-10 +45
Index of protection	IP24
Internal thermal protection	Fuse
Casting material	ABS plastic

BLA150N

Header Box Fan

Features

- The Blauberg **BLA150N** header box fans are designed for contractors and developers who are looking for a quality header box fan for the extraction of air in apartment projects.
- o Low noise levels and a low height profile allow for installation into limited ceiling space areas.
- Extraction of air from bathrooms, kitchens, ensuites, toilets, laundries, apartments etc.

• Centrifugal side discharge fan, low noise and backdraft damper, made from high quality ABS plastic housing and injection moulded, spring mounted pure white grille.

Motor

• 240 V single phase at 50 Hz. All motors have a sealed NSK ball bearing motor with a service life of up to 20,000 hours and come with a thermal overload fuse that cannot be reset.

Wiring

• 1.0 m lead and 2 pin plug.

Ordering Information

Part Number	Description
BLA150N	150 mm Header Box Fan

Overall Dimensions [mm]

1	

Technical Data

Model	BLA150N
Voltage [V/Hz]	220-240/50
Power [W]	50
Extract capacity [m³/h]	259
Noise level [dBA]	44
RPM [min ⁻¹]	2050
Installation type	Ceiling
Installation position	Ceiling
DN (diameter nominal) [mm]	150
Air flow temperature [°C]	-10 +45
Index of protection	IP24
Internal thermal protection	Fuse
Casting material	ABS plastic

BLA907N

Header Box Fan

Features

- The Blauberg **BLA907N** offers superior performance in header box fan design with superior performance, low height profile, low noise, good airflow and high pressure.
- Blauberg header box fans are designed for contractors and developers who are looking for quality header box fans with good performance and fast efficient installation times.
- Extraction of air from bathrooms, kitchens, ensuites, toilets, laundries and apartments.

Design

• Centrifugal side discharge fan, low noise and backdraft damper, made from high quality ABS plastic housing with an injection moulded plastic pure white grille.

Motor

• 240 V single phase at 50 Hz. All motors have a sealed NSK ball bearing motor with a service life of up to 20,000 hours and come with a thermal overload fuse that cannot be reset.

Wiring

• 1.0 m lead and 2 pin plug.

Ordering Information

Part Number	Description
BLA907N	Header Box Fan with 100 mm / 150 mm Side Duct Outlet

Overall Dimensions [mm]

Model	Α	В	С	D	E
BLA907N	140	100/150	165	260	300

Mounting

• Quick install screw down clips that lock down onto the ceiling provide a fast installation process and a tidy finish, with a clip mounted grille providing a tight secure fit to the ceiling.

Technical Data

Model	BLA907N
Voltage [V/Hz]	220-240/50
Power [W]	24
Extract capacity [m³/h]	162
Noise level [dBA]	38
RPM [min ⁻¹]	2050
Installation type	Ceiling
Installation position	Ceiling
DN (diameter nominal) [mm]	100
Air flow temperature [°C]	-10 +45
Index of protection	IP24
Internal thermal protection	Fuse
Casting material	ABS plastic

HVAC VENTILATION | 2020

BLA910LED

Header Box Fan

Features

- Stylish white fascia designed to blend into any décor
- Proven reliability, sealed ball bearing motor and backdraft damper
- Horizontal duct outlet for easy installation where ceiling space is limited
- (minimum 170 mm) • Duct adaptor 100 to 150 mm included
- 1.2 m lead & plug
- Extraction of air from bathrooms, kitchens, ensuites, toilets, laundries and apartments.

Ordering Information

Part Number	Description
BLA910LED	Header Box Fan LED Light 16 W LED 150 mm Outlet

Overall Dimensions [mm]

Technical Data

Model	BLA910LED
Voltage [V/Hz]	220-240/50
Power [W]	36
Extract capacity [m³/h]	216
Noise level @ 3m [dBA]	36
Light Source LED [W]	16
Lumens	1100
Colour Temp [K]	5000
Beam angle	120°
Environmental Protection	IP44

Vento Expert A50-1 S10 Pro

Heat recovery single-room units

Features

- Arrangement of efficient energy saving supply and exhaust single room ventilation in flats, houses, cottages, social and commercial premises.
- Reducing heat losses caused by ventilation due to heat recovery.
- Humidity balance and regulated air exchange create individually controlled microclimate.
- Coordinated network based on several integrated single room ventilation units with central control.

ဂျို	Air flow: up to 50 m³/h 14 l/s
※	Heat recovery efficiency: up to 93 %
	Power: from 3.61 W SFP: from 0.75 W/I/s
	Noise level:

Designation key	1
Model	Air duct

A: round air duct

Vento Expert

Rated air flow [m³/h] 50 Front panel -1: flat front panel

Ventilation hood type S10: white plastic hood AH-10 white 160 (for standard walls)

S: metal hood for thin walls

Control

Pro: control with touch buttons and a remote control

Heat and Moisture Regeneration

UNIT OPERATING LOGIC IN WINTER PERIOD

- Warm stale air is extracted from the premise, flows through the ceramic regenerator and transfers its heat energy and moisture to it.
- As the ceramic regenerator gets warmed up, the unit switches to the
- Clean cold intake air flows through the regenerator and absorbs accumulated heat and humidity.
 - When the ceramic regenerator is cooled down, the unit switches to the extract air mode.

supply mode.

• Control of the unit operation mode is performed by means of sensor control panel located on the unit casing or a remote controller.

ON/OFF button $\left(\right)$ Т 3 unit speeds Ventilation mode Heat regeneration mode m \bigcirc Night timer: low speed for 8 hours Party timer: high speed for 4 hours

Vento Expert is equipped with a humidity sensor for indoor humidity control. If humidity increases above a set point, the unit boosts to the speed III.

Vento Expert either can operate as independent unit or can be connected with other units in a house and controlled with a master unit. In this case, only the master unit receives a signal from the remote control.

Ordering Information		
Part Number	Model	Description
BLAVENTOA50PRO	Vento Expert A50-1 S10 Pro	SINGLE ROOM ERV

Mounting

- The unit is designed for through-the-wall installation inside a prepared hole in an outer wall of the building.
- The best ventilation solution is pairwise installation of reverse phase connected units. Some units ensure supply of fresh air to the room and the other units extract air from the premise. This way the most efficient balanced ventilation is arranged.
- In case of brand new construction, units are mounted in two stages:
 - **Pre-installation** at the stage of the indoor finishing and outer decorative wall finishing. It includes installation of an air duct, an outer ventilation hood and cable installation.
 - **Final mounting** before commissioning of a house. It includes installation of a regenerator with a fan and filters and mounting and wiring of an indoor unit with a controller and shutters.

Technical data

Parameters	Vent	o Expert A50-1 S10) Pro
Speed	I		
Voltage [V / 50 (60) Hz]		100-240	
Power [W]	3.61	4.15	5.20
Current [A]	0.025	0.030	0.039
RPM [min ⁻¹]	800	1300	1900
Air flow in ventilation mode [m³/h (l/s)]	15 (4)	30 (8)	50 (14)
Air flow in heat recovery mode [m³/h (l/s)]	8 (2)	15 (4)	25 (7)
SFP [W/l/s]	1.73	1.00	0.75
Filter	G3 (Option: F8 PM2.5 > 99 %*)		
Transported air temperature [°C]	-20+40		
Sound pressure level at 1 m [dBA]	20	27	30
Sound pressure level at 3 m [dBA]	11	18	21
Outdoor sound pressure attenuation [dBA] in accordance with DIN EN 20140		42	
Classification of air flow sensitivity to pressure difference variations in accordance with EN 13141-8		S2	
Indoor/outdoor airtightness classification of the complete unit in accordance with EN 13141-8		D1	
Heat recovery efficiency according to DIBt LÜ-A 20 [%]		up to 93	
Ingress Protection Rating	IP24		
* maximum air flow 40 m³/h			

Overall dimensions [mm]

Vento Expert A50-1 S10 Pro

Vento Expert A50-1 S Pro (for thin walls)

Accessories

Name		Description
Pre-installation Kit Vento Expert A50-1 S10		Pre-installation kit for mounting into a wall with standard thickness. Includes: • Air duct • AH 160 outer ventilation hood • Plastic foam plug • Plastic foam wedges
Pre-installation Kit Vento Expert A50-1 S		Pre-installation kit for mounting into a thin wall. Includes: Air duct AH-S chrome 160 outer ventilation hood Plastic foam plug Plastic foam wedges
Completion Kit Vento Expert A50-1		Final mounting kit. Includes: • Cartridge with a heat regenerator, a fan and G3 filters • Indoor unit with a controller and shutters • Remote control
ZL1 Vento 160/150	Ţ,	Cartridge with heat regenerator for cold climate
FP Vento Expert A50 G3		G3 filters (2 pcs.)
FP Vento Expert A50 F8		Includes: • Plastic frame (1 pc.) • G2 pre-filter (1 pc.) • F8 filter (1 pc.). Filtration rate PM2.5 > 99 % F8 filter reduces airflow of the unit down to 40 m³/h
AH-8 white 160		White painted aluminium outer ventilation hood with frost protection for a cold climate
AH-8 chrome 160		Brushed stainless steel outer ventilation hood with frost protection for a cold climate
AH-10 *colour* 160		Plastic outer ventilation hood. Available in colours: white black grey terracotta brown vintage
AH-10 chrome 160		Plastic outer ventilation hood with a plate with brushed stainless steel effect finish
AH-11 *colour* 160		Plastic outer ventilation hood. Available in colours: white black grey terracotta brown vintage
AH-S chrome 160		Outer ventilation hood for thin wall made of brushed stainless steel
AH-S grey 160		Outer ventilation hood for thin wall, painted grey
PP 160/0.5		Outer plastic ventilation hood for mounting from inside

Name		Description
KIT BlauPlast white 160		Kit for angular mounting with white color grille (for walls with standard thickness)
KIT BlauPlast chrome 160		Kit for angular mounting with stainless steel outer grille (for walls with standard thickness)
FB-Vento Expert		Remote control
CD-1	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CO2 sensor with LED indication and On/Off button
CD-2	3	CO2 sensor

Vento Expert A50-1 S10 W V.2

Heat recovery single room units

Features

- Arrangement of efficient energy saving, supply and exhaust, single room ventilation in flats, houses, cottages, social and commercial premises.
- Reducing heat losses caused by ventilation due to heat recovery.
- Humidity balance and controllable air exchange create individually controlled microclimate.
- Wi-Fi data exchange between several singleroom ventilation units for coordinated operation.
- Controlled by Android or iOS smartphone or tablet.

SINGLE-ROOM UNITS WITH HEAT RECOVERY

air shutters prevent air back drafting

Easy maintenance. Indoor unit is opened by pressing the latches

The specially designed front panel can be closed manually to ensure 100 % air tightness and protect against wind impact

Designation key		
Model	Air duct	Rated
Vento Expert	A: round air duct	50

on the market due to innovative

hexagonal structure of the heat exchanger cells

air flow [m³/h]

and Android or iOS device control

Front panel -1: flat front panel Ventilation hood type S10: white plastic hood AH-10 white 160 (for standard walls) S: metal hood (for thin walls)

Control

W V.2: Control and setup of the unit with the Wi-Fi mobile application

Control

- Unit control via smartphone or tablet application.
- The units can be connected by Wi-Fi for synchronized operation.
- House ventilation control via cloud service from anywhere in the world.
- via Wi-Fi.
- Blauberg Vento V.2 app for Android or iOS devices is available at Google Play and App Store.

• Vento Expert A50-1 S10 W V.2 either can operate as independent unit or can be connected with other units in a house and controlled with a master unit. In this case, only the master unit receives a signal from the remote control.

FOR LIVING ROOMS AND BEDROOMS

- Control of the unit operation mode is also performed by means of the sensor control panel located on the unit casing or the remote control.
 - **ON/OFF** button \square (T 3 unit speeds æ 1 Ventilation mode Heat recovery mode D Night timer: low speed for 8 hours Party timer: high speed for 4 hours

o Vento Expert is equipped with a humidity sensor for indoor humidity control. If humidity increases above a set point, the unit boosts to the speed III.

Ordering Information

Part Number	Model	Description
BLAVENTOA50EXPERTV2	Vento Expert A50-1 S10 W V.2	SINGLE ROOM ERV WITH WIFI CONTROL

Energy recovery

BLAUBERG

UNIT OPERATING LOGIC IN WINTER PERIOD

- Warm stale air is extracted from the premise, flows through the ceramic heat exchanger and transfers its heat and moisture to it.
- As the ceramic heat exchanger gets warmed up, the unit switches to the supply mode.

Mounting

- The unit is designed for through-the-wall installation inside a prepared hole in an outer wall of the building.
- The best ventilation solution is pairwise installation of reverse phase synchronized units. Some units ensure supply of fresh air to the room and the other units extract air from the premise. This way the most efficient balanced ventilation is arranged.
- In case of brand new construction, units are mounted in two stages:

- Clean cold intake air flows through the heat exchanger and absorbs accumulated heat and humidity.
- When the heat exchanger is cooled down, the unit switches to the extract air mode.
 - Pre-installation of an air duct and an outer ventilation hood at the stage of indoor finishing and outer decorative wall finishing.
 - Completion of the installation before commissioning of a house. It includes installation of the indoor unit with controller and shutters the cartridge, the heat exchanger, the fan and the filters.

Technical data

Parameters	Vento Expert A50-1 S10 Vento Expert A50-1 S W				
Speed	I	II	111		
Voltage [V / 50 (60) Hz]		100-240			
Power [W]	4.45	5.08	7.06		
Current [A]	0.035	0.040	0.059		
RPM [min ⁻¹]	800	1300	1900		
Air flow in ventilation mode [m³/h (l/s)]	15 (4)	30 (8)	50 (14)		
Air flow in energy recovery mode [m³/h (l/s)]	8 (2)	15 (4)	25 (7)		
SFP [W/l/s]	2.14	1.22	1.02		
Filter	G3 (0	ption: F8 PM2.5 > 9	9 %*)		
Transported air temperature [°C]		-20+40			
Sound pressure level at 1 m in accordance with ISO 3741:2004 [dBA]	20	27	30		
Sound pressure level at 3 m in accordance with ISO 3741:2004 [dBA]	11	18	21		
Outdoor sound pressure attenuation in accordance with DIN EN 20140 [dBA]		42			
Classification of air flow sensitivity to pressure difference variations in accordance with EN 13141-8		S2			
Indoor/outdoor airtightness classification of the complete unit in accordance with EN 13141-8		D1			
Heat recovery efficiency in accordance with DIBt LÜ-A 20 [%]		up to 93			
Ingress protection rating		IP24			

* maximum air flow 40 m³/h

Overall dimensions [mm]

Vento Expert A50-1 S10 W V.2

Vento Expert A50-1 S W V.2 (for thin walls)

Accessories

Name		Description
Pre-installation Kit Vento Expert A50-1 S10		Pre-installation kit for mounting into walls with standard thickness. Includes: • Air duct • AH-10 white 160 outer ventilation hood • Polystyrene foam plug • Polystyrene foam wedges
Pre-installation Kit Vento Expert A50-1 S		Pre-installation kit for mounting into thin walls. Includes: • Air duct • AH-S chrome 160 outer ventilation hood • Polystyrene foam plug • Polystyrene foam wedges
Completion Kit Vento Expert A50-1 W V.2		Final mounting kit. Includes: • Cartridge with a heat exchanger, a fan and G3 filters • Indoor unit with a controller and shutters • Remote control
ZL1 Vento 160/150	C	Cartridge with heat regenerator for cold climate
FP Vento Expert A50 G3		G3 filters (2 pcs.)
FP Vento Expert A50 F8	6	Filter set. Includes: • Plastic frame (1 pc.) • G2 pre-filter (1 pc.) • F8 filter (1 pc.). Filtration rate PM2.5 > 99 %
AH-8 white 160		White painted aluminium outer ventilation hood with frost protection for a cold climate
AH-8 chrome 160		Brushed stainless steel outer ventilation hood with frost protection for a cold climate
AH-10 *colour* 160		Plastic outer ventilation hood. Available in colours: white black grey terracotta brown vintage
AH-10 chrome 160		Plastic outer ventilation hood with a plate with brushed stainless steel effect finish
AH-11 *colour* 160		Plastic outer ventilation hood. Available in colours: white black grey terracotta brown vintage
AH-S white 160		Stainless steel ventilation hood, painted white
AH-S chrome 160		Brushed stainless steel ventilation hood
PP 160/0.5		Plastic outer grille with pipe for mounting from indoor

Name		Description
KIT BlauPlast white 160		Kit for angular mounting with white color grille (for walls with standard thickness)
KIT BlauPlast chrome 160		Kit for angular mounting with stainless steel outer grille (for walls with standard thickness)
R 160-500		500 mm air duct and polystyrene foam plug
R 160-700		700 mm air duct and polystyrene foam plug
SE Vento Expert W		Sensor control panel
FB Vento Expert A50		Remote control
CD-1))))	CO $_2$ sensor with LED CO $_2$ indication and a sensor button for operation mode selection
CD-2	19 mar	CO2 sensor
S Vento Expert A50	• 72	Cardboard template for indoor installation of the unit

Vento Expert A100-1 S10 W V.2

Heat recovery single-room units

Features

- Arrangement of efficient energy saving, supply and exhaust, single-room ventilation in flats, houses, cottages, social and commercial premises.
- Reducing heat losses caused by ventilation due to heat recovery.
- Humidity balance and controllable air exchange create individually controlled microclimate.
- Wi-Fi data exchange between several singleroom ventilation units for coordinated operation.
- Controlled by Android or iOS smartphone or tablet.
- Connection to smart house or Building Management System (BMS).

Air flow: up to 108 m³/h 30 l/s Heat recovery efficiency: up to 83 % Power:

RFADY

One of the best heat recovery efficiency on the market due to innovative hexagonal structure of the heat exchanger cells

Built-in Wi-Fi for wireless communication between units and Android or iOS device control

Integrated automatic air shutters prevent air back drafting

Easy maintenance. Indoor unit is opened by pressing the latches on both sides. The specially designed front panel can be closed manually to ensure 100 % air tightness and protect against wind impact

Designation key Model Vento Expert

Air duct A: round air duct

Maximum air flow [m³/h] 100 Unit modification

-1

S10: plastic outer ventilation hoodAH-10 white 160 (for standard walls)**S:** metal hood (for thin walls)

Ventilation hood type

Control

W V.2: control and setup of the unit with the Wi-Fi mobile application

Control

- Unit control via smartphone or tablet application.
- The units can be connected by Wi-Fi for synchronized operation.
- House ventilation control via cloud service from anywhere in the world.
- Connection to smart house or Building Management System (BMS) via Wi-Fi.

Blauberg Vento V.2 app for Android or iOS devices is available at Google Play and App Store.

- Vento Expert A100-1 S10 W V.2 either can operate as independent unit or can be connected with other units in a house and controlled with
- Control of the unit operation mode is also performed by means of the sensor control panel located on the unit casing or the remote control.

a master unit. In this case, only the master unit receives a signal from

ON/OFF button ON/OFF

 Vento Expert A100-1 S10 W V.2 is equipped with a humidity sensor for indoor humidity control. If humidity increases above a set point, the unit boosts to the speed III.

Ordering Inform	nation	
Part Number	Model	Description
BLAVENTOA100EXPERTV2	Vento Expert A100-1 S10 W V.2	SINGLE ROOM ERV WITH WIFI CONTROL

the remote control.

Energy recovery

UNIT OPERATING LOGIC IN WINTER PERIOD

- Warm stale air is extracted from the premise, flows through the ceramic heat exchanger and transfers its heat and moisture to it.
- As the ceramic heat exchanger gets warmed up, the unit switches to the supply mode.
- Clean cold intake air flows through the heat exchanger and absorbs accumulated heat and humidity.
- When the heat exchanger is cooled down, the unit switches to the extract air mode.

Mounting

- The unit is designed for through-the-wall installation inside a prepared hole in an outer wall of the building.
- The best ventilation solution is pairwise installation of reverse phase synchronized units. Some units ensure supply of fresh air to the room and the other units extract air from the premise. This way the most efficient balanced ventilation is arranged.
- The Vento Expert A100-1 W V.2 unit can also be installed in a bathroom and kitchen, if allowed by local building codes. Otherwise, the Vento Expert Duo unit or an extract fan should be installed.

Angular mounting into a wallwith standard thickness using

Unit installation example with the hoods for thin walls AH-S grey 160 / AH-S chrome 160

Technical data

Parameters	Vento Expert A100-1 S10 W V.2 Vento Expert A100-1 S W V.2				
Speed	I	II	111	MAX	
Voltage [V / 50 (60) Hz]		100	-240		
Power [W]	3.20	4.00	6.60	18.00	
Current [A]	0.037	0.046	0.071	0.151	
RPM [min ⁻¹]	780	1100	1920	2940	
Air flow in ventilation mode [m³/h (l/s)]	18(5)	30 (8)	58 (16)	108 (30)	
Air flow in energy recovery mode [m³/h (l/s)]	9 (3)	15 (4)	29 (8)	54 (15)	
SFP [W/l/s]	1.28	0.96	0.82	1.20	
Filter	G3 (Option: F8 PM2.5 > 99 %*)				
Transported air temperature [°C]	-20+40				
Sound pressure level at 1 m in accordance with ISO 3741:2004 [dBA]	23	27	40	51	
Sound pressure level at 3 m in accordance with ISO 3741:2004 [dBA]	13	18	30	42	
Outdoor sound pressure attenuation in accordance with DIN EN 20140 [dBA]	42				
Classification of air flow sensitivity to pressure difference variations in accordance with EN 13141-8	s s2				
Indoor/outdoor airtightness classification of the complete unit in accordance with EN 13141-8	D1				
Heat recovery efficiency in accordance with DIBt LÜ-A 20 [%]	up to 87				
Ingress Protection Rating		IP	24		

 * maximum air flow 82 m³/h

Overall dimensions [mm]

Vento Expert A100-1 S10 W V.2

Vento Expert A100-1 S W V.2 (for thin walls)

Accessories

Name		Description
FP Vento Expert A100 G3		G3 filters (2 pcs.)
FP Vento Expert A50 F8	8	Filter set. Includes: • Plastic frame (1 pc.) • G2 pre-filter (1 pc.) • F8 filter (1 pc.). Filtration rate PM2.5 > 99 %
AH-10 *colour* 160		Plastic outer ventilation hood. Available in colours: white black grey terracotta brown vintage
AH-10 chrome 160		Plastic outer ventilation hood with a plate with brushed stainless steel effect finish
AH-11 *colour* 160		Plastic outer ventilation hood. Available in colours: white black grey terracotta brown vintage
AH-S grey 160		Stainless steel ventilation hood, painted grey
AH-S chrome 160		Brushed stainless steel ventilation hood
PP 160/0.5		Plastic outer grille with pipe for mounting from indoor
KIT BlauPlast white 160		Kit for angular mounting with white color grille (for walls with standard thickness)
KIT BlauPlast chrome 160		Kit for angular mounting with stainless steel outer grille (for walls with standard thickness)
R 160-500		500 mm air duct and polystyrene foam plug
R 160-700		700 mm air duct and polystyrene foam plug
SE Vento Expert W		Sensor control panel
FB Vento Expert A50		Remote control

Name		Description
CD-1		CO2 sensor with LED CO2 indication and a sensor button for operation mode selection
CD-2	(a) may	CO2 sensor
S Vento Expert A50		Cardboard template for indoor installation of the unit

FRESHBOX 100 ERV WiFi

Single-room air handling units

Features

- Efficient solution for supply and exhaust ventilation of enclosed spaces.Electric preheater or reheater modification available for cold climate
- Heat exchanger with an enthalpy membrane modification available for
- humid and hot climate conditions.
- Low energy EC motors. Silent operation.
- Supply air purification ensured by two built-in G4 and F8 filters (optionally H13 filter, F8 Carbon).
- Upgradeable with an exhaust duct to provide air extraction from the bathroom.
- Easy installation.
- Compact size.
- Wi-Fi communication
- Controlled by Android or iOS smartphone or tablet over Wi-Fi.

- Polymer coated metal casing decorated with an acrylic front panel. Heat and noise insulation is ensured by a layer of 10 mm cellular synthetic rubber.
- The front panel provides convenient access for filter maintenance and has a lock for extra security.
- The unit has two Ø 100 mm pipes for fresh air intake and stale air extraction outside. The third Ø 100 mm pipe (included in the scope of delivery) can be additionally fitted to the unit to connect the exhaust air duct from the bathroom.

Motor

- The units feature efficient electronically commutated (EC) motors with an external rotor and impellers with forward curved blades. These state-ofthe-art-motors are the most advanced solution in energy efficiency today.
- EC motors are characterised with high performance and optimum control across the entire speed range. In addition to that the efficiency of electronically commutated motors reaches very impressive levels of up to 90 %.

Designation key					
Series	Heater		Rated air flow [m³/h]	Heat exchanger core type	Control
Freshbox	_: no heater E: Preheating E1: reheating E2: Preheating and reheating	-	100	ERV: energy recovery	WiFi: sensor control panel and Wi-Fi communication

Air Dampers

• The unit is equipped with supply and exhaust air dampers which activate automatically to prevent drafts while the unit is off.

Air Filtration

• Supply air cleaning is provided by the G4 and F8 filters. To meet more stringent air purity requirements the F8 filter can be replaced with an H13 or F8 Carbon Filter (purchased separately). Exhaust air is cleaned by the panel filter G4.

Operating Principle

- The cold outdoor air passes through the filters and the heat exchanger and then is delivered to the serviced space by the supply centrifugal fan.
 Warm stale air from indoors passes through the filter and the heat
- exchanger and is discharged outdoors by the centrifugal fan. • The supply and exhaust air flows are fully separated which helps elim-
- inate the possibility of odour or microbial transfer between the streams.

Operating principle with extra spigot for bathroom exhaust ventilation

Ordering Information Part Number Model Description BLAFRESHBOX100 FRESHBOX100 ERV WiFi SINGLE ROOM ENERGY RECOVERY WITH WIFI CONTROL

Heat and Energy Recovery

- The Freshbox 100 ERV WiFi units are equipped with a counter-flow energy recovery core with an enthalpy membrane at the core.
 - In the cold season the exhaust air heat and moisture are transferred to the supply air stream through the enthalpy membrane reducing the heat losses through ventilation.
 - In warm season the heat and humidity of the outdoor air is absorbed by extract air flow through the enthalpy membrane. This way the supply air temperature and humidity decreases and heat recovery reduces operation loads for the air conditioner.

Heaters

PREHEATING

• Freshbox E-100 ERV WiFi, Freshbox E2-100 ERV WiFi units are equipped with an electric preheater for freeze protection of the heat exchanger.

REHEATING

• Freshbox E1-100 ERV WiFi, Freshbox E2-100 ERV WiFi units feature an electric reheater to raise the supply air temperature as necessary.

Freeze Protection

- Freshbox 100 ERV WiFi features an exhaust air temperature sensor downstream of the heat exchanger which disables the supply fan to let the warm extract air warm up the heat exchanger. After that the supply fan is turned on and the unit reverts to the normal operation mode.
- Overheating protection for Freshbox E-100 ERV WiFi and Freshbox E2-100 ERV WiFi is implemented with a preheater.

Control

- The unit is equipped with a control panel.
- The remote control is supplied as standard
- Wi-Fi communication.

AUTOMATIC FUNCTIONS

	Freshbox 100 ERV WiFi Freshbox E-100 ERV WiFi	Freshbox E1-100 ERV WiFi Freshbox E2-100 ERV WiFi
Speed selection	•	•
Filter replacement indication	•	•
Alarm indication	•	•
Speed setup	•	•
Timer	•	•
Week scheduler	•	•
Reheater enabled/disabled		•
Supply air temperature setup		•
Control with the mobile application Android / iOS	•	•

Download

iOS application

Blauberg Freshbox

Download Android application **Blauberg Freshbox**

Technical Data

Parameters	Freshbox 100 ERV WiFi					Freshbox E-100 ERV WiFi				
Speed	I		III	IV	٧	I	II	III	IV	٧
Voltage [V / 50 (60) Hz]			1~ 110-240					1~230		
Max. power without heater(s) [W]	20	23	29	37	53	20	23	29	37	53
Preheater power consumption [W]			-					700		
Reheater power consumption [W]			-					-		
Max. current consumption without heater(s) [A]					0	.4				
Max. current consumption with heater(s) [A]		- 3.6								
Maximum air flow [m³/h (l/s)]	30 (8)	44 (12)	60 (17)	75 (21)	100 (28)	30 (8)	44 (12)	60 (17)	75 (21)	100 (28)
RPM [min ⁻¹]					max	2200				
Sound pressure level at 3 m [dBA]	13	20	27	33	39	13	20	27	33	39
Transported air temperature [°C]					-20	.+40				
Casing material					polymer co	pated steel				
Insulation thickness [mm]					1	0				
Extract filter					G	4				
Supply filter				(64 + F8 (Option:	F8 Carbon; H1	3)			
Connected air duct diameter [mm]					1(00				
Weight [kg]					3	1				
Heat recovery efficiency [%]*	96	94	92	89	87	96	94	92	89	87
Heat recovery core type					counte	er-flow				
Heat exchanger material					enthalpic I	membrane				
SEC class					I	4				

*Heat recovery efficiency is specified in compliance with EN 13141-8.

REMOTE CONTROL

- 1 Turning unit on/off
- 2 Speed selection (Min/Mid/Max)
- 3 Increasing temperature set point for the reheater (available for the models with a reheater)
- 4 Turning reheater on/off (available for the models with a reheater)
- 5 Decreasing temperature set point for the reheater (available for the models with a reheater)
- 6 Turning timer on/off
- 7 Activation/deactivation of the scheduled operation mode

CONTROL PANEL

- Speed changeover (up)
- Weekly schedule
- Connection to WiFi
- Filter replacement indication
- Alarm indication

Parameters		Fresh	box E1-100 ER\	/ WiFi		Freshbox E2-100 ERV WiFi					
Speed	I	II		IV	٧	I	II		IV	٧	
Voltage [V / 50 (60) Hz]	1~230										
Max. power without heater(s) [W]	20	23	29	37	53	20	23	29	37	53	
Preheater power consumption [W]	- 700										
Reheater power consumption [W]	350										
Max. current consumption without heater(s) [A]	0.4										
Max. current consumption with heater(s) [A]			1.94			5.2					
Maximum air flow [m³/h (l/s)]	30 (8)	30 44 60 75 100 (8) (12) (17) (21) (28)					44 (12)	60 (17)	75 (21)	100 (28)	
RPM [min ⁻¹]	max 2200										
Sound pressure level at 3 m [dBA]	13	13 20 27 33 39					20	27	33	39	
Transported air temperature [°C]	-20+40										
Casing material	polymer coated steel										
Insulation thickness [mm]	10										
Extract filter	G4										
Supply filter	G4										
Connected air duct diameter [mm]	100										
Weight [kg]	31										
Heat recovery efficiency [%]*	96	94	92	89	87	96	94	92	89	87	
Heat recovery core type					counte	er-flow					
Heat exchanger material	enthalpic membrane										
SEC class	Α										
Heat recovery efficiency is specified in con	nnlianco with F	N 121/1-0									

*Heat recovery efficiency is specified in compliance with EN 13141-8.

Sound power level, A-weighted	Total	Octave 63	frequer 125	ncy band 250	[Hz] 500	1000	2000	4000	8000	Sound pressure level at 3 m, A-filter applied	Sound pressure level at 1 m, A-filter applied
LwA to environment [dBA]	4000	45	40	44	38	33	29	27	22	28	38

Mounting example

Each space requiring ventilation is equipped with one or several **Freshbox 100 ERV WiFi** units.

A single unit is capable to ensure efficient ventilation in spaces with floor area up to 75 $\ensuremath{m^2}$.

Freshbox 100 ERV WiFi units can be upgraded with a bathroom exhaust air duct. To enable such a configuration the units can be additionally equipped with the optional \oslash 100 mm spigot (supplied as standard).

FRESHBOX 100 ERV WIFI MOUNTING EXAMPLE IN THE OFFICE

blaubergventilation.com.au

Accessories

Name		Description
MS Freshbox 100 chrome		Mounting kit: • Two ∅ 100 mm air ducts, 500 mm long • Ventilation outer hood made of polished steel • Cardboard template
MS Freshbox 100 white		Mounting kit: • Two ∅ 100 mm air ducts, 500 mm long • Ventilation outer hood, painted white • Cardboard template
AH Freshbox 100 chrome		Ventilation outer hood made of polished steel
AH Freshbox 100 white		Ventilation outer hood, painted white
EH Freshbox 100		Heater to prevent condensate freezing in the drain pipe and outer ventilation hood
FP 193x158x18 G4 PPI		G4 Panel filter
FP 193x158x47 F8		F8 Panel filter
FP 193x158x47 F8 C		F8 Carbon panel filter
FP 193x158x47 H13		H13 Hepa panel filter
HR-S		Humidity sensor
CD-1	100	CO2 sensor with LED CO2 indication and a sensor button for operation mode selection
CD-2	81	CO2 Sensor

FRESHBOX 200 ERV WiFi

Single-room air handling units

Features

- Efficient solution for supply and exhaust ventilation of enclosed spaces.
- EC fans with low energy consumption.
- Supply air cleaning is provided by the G4 and F7 filters. Additional air purification due to recirculation. H13 filter is available as an option.
- Upgradeable with an exhaust duct to provide air extraction from the bathroom.
- Easy installation.
- Compact size.
- Controlled by Android or iOS smartphone or tablet over Wi-Fi.

Design

- The casing is made of polymer coated steel plates.
- The front panel provides convenient access for filter maintenance and has a lock for extra security.
- The unit has two ∅ 100 mm pipes for fresh air intake and stale air extraction outside. The third ∅ 100 mm pipe (included in the scope of delivery) can be additionally fitted to the unit to connect the exhaust air duct from the bathroom.
- Available modifications with an integrated preheater and reheater for cold climate applications.

Motor

- The units feature efficient electronically commutated (EC) motors with an external rotor and impellers with forward curved blades. These state-ofthe-art motors are the most advanced solution in energy efficiency today.
- EC motors are characterised with high performance and optimum control across the entire speed range. In addition to that the efficiency of electronically commutated motors reaches very impressive levels of up to 90 %.

Designation key					
Model	Heater		Rated air flow [m³/h]	Heat exchanger type	Control
Freshbox	_: no heater E: Preheating E1: reheating E2: Preheating and reheating	-	200	ERV: energy recovery	WiFi: sensor control panel and Wi-Fi communication

blaubergventilation.com.au

Air Dampers

• The unit is equipped with supply and exhaust air dampers which activate automatically to prevent drafts while the unit is off.

Air Filtration

- Supply air cleaning is provided by the G4 and F7 filters. To meet more stringent air purity requirements the F7 filter can be replaced with an H13 Filter (purchased separately).
- Exhaust air is cleaned by the panel filter G4.

Heaters

PREHEATING

• Freshbox E-200 ERV WiFi, Freshbox E2-200 ERV WiFi units are equipped with an electric preheater for freeze protection of the heat exchanger.

REHEATING

• Freshbox E1-200 ERV WiFi, Freshbox E2-200 ERV WiFi units feature an electric reheater to raise the supply air temperature as necessary.

Freeze Protection

- The **Freshbox 200 ERV WiFi** features an exhaust air temperature sensor downstream of the heat exchanger which disables the supply fan to let the warm extract air warm up the heat exchanger. Then the supply fan is turned on and the unit reverts to normal operation.
- Freeze protection for **Freshbox E-200 ERV WiFi** and **Freshbox E2-200 ERV WiFi** is implemented with an electric preheater.

Heat and Energy Recovery

- The unit is equipped with a counter-flow energy recovery core with an enthalpy membrane at the core.
 - In the cold season the exhaust air heat and moisture are transferred to the supply air stream through the enthalpy membrane reducing the heat losses through ventilation.
 - Consequently, it is the intake air heat and moisture transferred to the extract air stream through the enthalpy membrane in the warm season. This allows for a considerable reduction of the supply air temperature and humidity which, in turn, reduces the air conditioning load.

Operating Principle

HEAT RECOVERY OPERATION MODE

- The cold outdoor air passes through the filters and the heat exchanger and then is delivered to the serviced space by the supply centrifugal fan.
- Warm stale air from indoors passes through the filter and the heat exchanger and is discharged outdoors by the centrifugal fan.
- The supply and exhaust air flows are fully separated which helps eliminate the possibility of odour or microbial transfer between the streams.

RECIRCULATION OPERATION MODE

• The supply and exhaust air dampers are closed. the recirculation damper is open The room air circulates through the filters. Then it is returned back to the room purified.

Part Number	Model	Description
BLAFRESHBOX200	FRESHBOX 200 ERV WiFi	SINGLE ROOM ENERGY RECOVERY WITH WIFI CONTROL

Control

- The unit is equipped with a control panel.
- The remote control is supplied as standard
- Wi-Fi communication.

AUTOMATIC FUNCTIONS

	Freshbox 200 ERV WiFi Freshbox E-200 ERV WiFi	Freshbox E1-200 ERV WiFi Freshbox E2-200 ERV WiFi
Speed selection	•	•
Filter replacement indication	•	•
Alarm indication	•	•
Speed setup	•	•
Timer	•	•
Week scheduler	•	•
Reheater enabled/disabled		•
Supply air temperature setup		•
Control with the mobile application Android / iOS	•	•

iOS application

Blauberg Freshbox

Download Android application **Blauberg Freshbox**

Technical Data

REMOTE CONTROL

- 1 Turning unit on/off
- 2 Speed selection (Min/Mid/Max)
- 3 Increasing temperature set point for the reheater (available for the models with a reheater)
- 4 Turning reheater on/off (available for the models with a reheater)
- **5** Decreasing temperature set point for the reheater (available for the models with a reheater)
- 6 Turning timer on/off
- 7 Activation/deactivation of the scheduled operation mode

Parameters	Freshbox 200 ERV WiFi Freshbox E-200 ERV WiFi				Freshbox E1-200 ERV WiFi				liFi	Freshbox E2-200 ERV WiFi										
Speed	I	П	Ш	IV	V	Ι	II	Ш	IV	v	I	П	Ш	IV	V	I	П	III	IV	V
Voltage [V / 50 (60) Hz]										1~	230									
Max. power without heater(s) [W]	10	15	25	44	134	10	15	25	44	134	10	15	25	44	134	10	15	25	44	134
Preheater power consumption [W]			_					650					-					650		
Reheater power consumption [W]			-					-					700					700		
Max. current consumption with heater(s) [A]			1					4					4.2					7.2		
Maximum air flow [m³/h (l/s)]	30 (8)	60 (17)	90 (25)	120 (33)	200 (56)	30 (8)	60 (17)	90 (25)	120 (33)	200 (56)	30 (8)	60 (17)	90 (25)	120 (33)	200 (56)	30 (8)	60 (17)	90 (25)	120 (33)	200 (56)
RPM [min ⁻¹]										20	000									
Sound pressure level at 3 m [dBA]	12	22	30	36	45	12	22	30	36	45	12	22	30	36	45	12	22	30	36	45
Transported air temperature [°C]		-15+40																		
Casing material									ро	lymer c	oated s	teel								
Insulation thickness [mm]										3	30									
Extract filter										G	6 4									
Supply filter									G4	+ F7 (0	ption: I	H13)								
Connected air duct diameter [mm]										1	00									
Weight [kg]										5	55									
Heat recovery efficiency [%]*	85	81	75	68	66	85	81	75	68	66	85	81	75	68	66	85	81	75	68	66
Heat recovery core type		counter-flow																		
Heat recovery core material									er	thalpic	membr	ane								
SEC class		٩																		

*Heat recovery efficiency is specified in compliance with EN 13141-8.

Overall dimensions [mm]

Mounting Example

Each space requiring ventilation is equipped with one or several **Freshbox 200 ERV WiFi** units.

Can be upgraded with a bathroom exhaust air duct. To enable such a configuration the units can be additionally equipped with the optional \oslash 100 mm spigot (supplied as standard).

FRESHBOX 200 ERV WIFI MOUNTING EXAMPLE IN THE OFFICE

Accessories

Name	Description
MS Freshbox 200 chrome	Mounting kit: • Two ∅ 100 mm air ducts, 500 mm long • Ventilation outer hood made of polished steel • Cardboard template
MS Freshbox 200 white	Mounting kit: • Two ∅ 100 mm air ducts, 500 mm long • Ventilation outer hood, painted white • Cardboard template
AH Freshbox 200 chrome	Ventilation outer hood made of polished steel
AH Freshbox 200 white	Ventilation outer hood, painted white
FP 201x162x20 G4	Exhaust G4 cassette filter
FP 243x162x20 G4	Supply G4 cassette filter
FP 502x162x40 F7	Supply F7 cassette filter
FP 502x162x40 H13	Supply HEPA H13 cassette filter
CD-1	CO2 sensor with LED CO2 indication and a sensor button for operation mode selection
CD-2	 CO2 Sensor

BLAUBERG

Suspended heat and energy recovery air handling units

Features

- Air handling unit for efficient supply and exhaust ventilation in flats, houses, cottages and other buildings.
- Heat and energy recovery enables reduction of air conditioning load in hot climate conditions and heat losses in cold climate conditions.
- Controllable air exchange ensures the best suitable indoor microclimate.
- Compatible with round ∅ 100 or 150 mm air ducts.

Design

- The casing is made of polymer coated steel panels, internally heat- and sound insulated with 5–10 mm (depend on modification) polyurethane foam.
- The bottom service panel provides easy access for maintenance of the filters and the heat exchanger.
- The spigots for connection to the air ducts are located on the sides of the unit and are rubbed sealed for airtight connection to the air ducts.
- The mounting brackets on the casing ensure easy installation under the ceiling.

Fans

- The units are equipped with three-speed external rotor motors with centrifugal impellers and forward curved blades.
- Integrated overheating protection with automatic restart.
- Ball bearings for longer service life.
- Dynamically balanced impellers.
- Distinguished with reliable and low noise operation.

Air Filtration

- Two built-in G4 and F7 filters provide efficient supply air filtration.
- The G4 filter is used for extract air filtration.

Heat Recovery

- The unit is equipped with a plate cross-flow enthalpy aluminium heat exchanger.
- Heat recovery is based on heat and moisture transfer between the extract and supply air streams through the heat exchanger plates. The air flows are fully separated while flowing through the heat exchanger.
- The process of heat transfer proceeds in the heat exchanger where extract air transfers most of its heat to the intake air flow. This reduces heat energy losses in cold seasons. In summer heat recovery acts reverse: the cooled extract air transfers part of cold to the warm intake air. This contributes to better performance of the air conditioner in ventilated premises.

Control and Automation

- The unit have the integrated S41 control panel with the functions:
 - Unit On/Off
 - Speed selection
 - Setting indoor air temperature
 - Setting week scheduled operation

Mounting

- Due to the low casing height the unit perfectly fits for mounting in the limited space behind the suspended ceiling.
- The unit mounting position must provide access for service maintenance.

Designation key					
Series	Unit type	Mounting type	Rated air flow [m³/h]	Modification	Control
KOMFORT	ERV: energy recovery venti- lation unit	D: suspended mounting, horizon- tally oriented spigots	350; 450	Р	S41: control panel with LCD display

Overall Dimensions [mm]							
Model	D	В	н	L			
KOMFORT ERV D350P S41	150	704	227	854			
KOMFORT ERV D450P S41	150	704	227	1020			

Ordering Information Part Number Model Description BLAKOMFORTD350PS41 KOMFORT ERV D350P S41 CEILING MOUNTED ENERGY RECOVERY AHU BLAKOMFORTD450PS41 KOMFORT ERV D450P S41 CEILING MOUNTED ENERGY RECOVERY AHU

Technical Data

Parameters	к	OMFORT ERV D350P S	41	к	OMFORT ERV D450P S	41	
Speed	L	М	Н	L	М	Н	
Voltage [V/50 Hz]		220		220			
Power [W]	181	231	330	250	292	354	
Current [A]	0.82	1.05	1.50	1.10	1.30	1.60	
Maximum air flow [m³/h (l/s)]	140 (39)	260 (72)	400 (111)	225 (63)	355 (99)	500 (139)	
RPM [min ⁻¹]	800	1100	1450	900	1250	1650	
Sound pressure level at 3 m [dBA]	40	49	58	42	51	59	
Transported air temperature [°C]		-25+40		-25+40			
PM2.5 filtration efficiency	96	95	95	96	95	94	
Casing material		polymer coated steel		polymer coated steel			
Connected air duct diameter [mm]		150		150			
Mass [kg]		32		39			
Heat recovery efficiency [%]	76	72	66	78	75	70	
Heat exchanger type		cross-flow		cross-flow			
Heat exchanger material		aluminium			aluminium		

* Heat recovery efficiency is specified in compliance with EN 13141-7.

Accessories

	KOMFORT ERV D350P S41	KOMFORT ERV D450P S41
G4 panel filter	FP 300×220×48 G4	FP 300×270×48 G4
F8 panel filter	FP 300×220×48 F8	FP 300×270×48 F8
Summer block	SB C4 300/270	SB C4 300/270

Suspended heat and energy recovery air handling units

Features

BLAUBERG

- Air handling units for efficient supply and exhaust ventilation in flats, houses, cottages and other buildings.
- Reduction of load on air conditioning systems in a hot climate and heat loss in a cold climate due to heat and moisture recovery.
- Control of air exchange for creating comfortable indoor microclimate.
- Compatible with round \varnothing 100 or 150 mm air ducts.

Design

- The casing is made of polymer coated steel panels, internally filled with foamed polyurethane layer 5–10 mm (depend on modification) for heatand sound insulation.
- The unit is equipped with a removable bottom panel for ease of maintenance. This service panel is used to access the filters and the heat exchanger for maintenance operations.
- The spigots are located at the sides of the unit and are equipped with rubber seals for airtight connection to the air ducts.
- The casing is equipped with fixing brackets to suspend the unit to the ceiling.

Fans

- The unit is equipped with high efficient external rotor EC motors used for air supply and exhaust.
- The KOMFORT ERV EC DB250 S14 units are equipped with a centrifugal impeller with forward curved blades and the KOMFORT ERV EC DB350 S14 units – with backward curved blades.
- EC motors have the best power consumption to air flow ratio and meet the latest demands concerning energy saving and high efficient ventilation.
- EC motors are featured with high performance, low noise level and totally controllable speed range.
- The impellers are dynamically balanced.

ø

Heat Recovery

• The unit is equipped with an enthalpy plate cross-flow heat exchanger for enegry (heat and humidity) recovery. Due to humidity recovery condensate is not generated in the enthalpy heat exchanger.

- The air flows are completely separated in the heat exchanger. Thus smells and contaminants are not transferred from the extract air to the supply air.
- Heat recovery is based on heat and/or humidity transfer through the heat exchanger plates. In the cold season supply air is heated in the heat exchanger by transferring the heat energy of warm and humid extract air to the cold fresh air. Heat recovery minimizes ventilation heat losses and heating costs respectively.
- In the warm season the heat exchanger performs reverse and intake air is cooled in the heat exchanger by the cool extract air. That reduces operation load on air conditioners and saves electricity.

FROST PROTECTION

• The integrated automatic freeze protection is used to prevent freezing of the heat exchanger in the cold season. The supply fan turns off according to the temperature sensor to get the heat exchanger warmed up with extract air. After that the supply fan turns on and the unit continues to run in the standard mode.

Air Filtration

- Two built-in G4 and F8 filters provide efficient supply air filtration.
- The G4 filter is used for extract air filtration.

Bypass

• The units are equipped with a bypass for summer ventilation (air cooling by the cool air from outside).

Control and Automation

- The KOMFORT ERV EC DB S14 units have an integrated control system with a wall-mounted control panel S14 with a LED indication. The units are equipped with a USB connector (Type B) and can be connected to a PC for configuring the advanced settings in a special software.
- The standard delivery set includes a 10 m cable
- for connection of the unit to the control panel. • S14 automation functions:
 - Unit On/Off.
 - Unit performance control (selection of Low, Medium or High speed).
 - Bypass damper opening and closing for summer ventilation.
 - Alarm indication.
 - Filter maintenance indication.
- Additional functions of the S14 automation with installed software:
 Fan speed adjustment from 0 to 100 %. Each speed is individually
 - adjusted for the supply and the extract fans.
 - Operation control on feedback from the FS2 duct humidity sensor (to be ordered separately).
 - Unit operation setting according to the external control unit (to be ordered separately).
 - Temperature setting for freeze protection system activation.
 - Control and operation adjustment of the filter maintenance timer
 - External relay control unit and humidity level control.
 - Software version upgrading.

Mounting

- Due to a low casing height the air handling units are a perfect solution for space restricted installation above suspended ceilings.
- The unit mounting position must provide access for service maintenance.

Designation key						
Series	Unit type	Motor type	Mounting type	Bypass	Rated air flow [m³/h]	Control
KOMFORT	ERV: energy recovery ventilation	EC: electronically commutated motor	D: suspended mounting, horizontally oriented spigots	B: integrated bypass	250; 350	S14: sensor control panel with LED indication

Overall Dimensions					
Model	D	В	Н	L	L1
KOMFORT ERV EC DB250 S14	149	704	227	947	854
KOMFORT ERV EC DB350 S14	149	754	277	1117	1024

Part Number	Model	Description
BLAKOMFORTERVECDB250S14	KOMFORT ERV EC DB250 S14	EC MOTORS CEILING MOUNTED ENERGY RECOVERY AHU
BLAKOMFORTERVECDB250S14	KOMFORT ERV EC DB350 S14	EC MOTORS CEILING MOUNTED ENERGY RECOVERY AHU

KOMFORT ERV EC DB350 S14

Technical Data

Parameters	KOMFORT ERV EC DB250 S14	KOMFORT ERV EC DB350 S14		
Voltage [V / 50 (60) Hz]	1 ~ 230	1 ~ 230		
Power [W]	84	171		
Current [A]	0.7	1.3		
Maximum air flow [m³/h (l/s)]	300 (83)	430 (119)		
RPM [min ⁻¹]	2000	3200		
Sound pressure level at 3 m [dBA]	36	46		
Transported air temperature [°C]	-25+40	-25+40		
Extract filter	G4	G4		
Supply filter	G4 + F8 (PM2.5 > 83 %)	G4 + F8 (PM2.5 > 87 %)		
Connected air duct diameter [mm]	150	150		
Weight [kg]	29	42		
Heat recovery efficiency [%]*	63-73	68-85		
Humidity recovery efficiency [%]	16-27	19-34		
Heat exchanger type	cross-flow	cross-flow		
Heat exchanger material	enthalpy	enthalpy		
SEC class	A	A		
ErP	2016, 2018	2016, 2018		

* Heat recovery efficiency is specified in compliance with EN 13141-7.

Pressure [Pa] 700 600 500 400 300 200 100 0 0 300 350 400 450 Air flow [m³/h] 50 100 150 200 250 0 100 90 80 70 60 50 40 30 20 10 Heat recovery efficiency [%] Heat recovery – – Humidity recovery

800

0 50 100 150 200 250 300 350 400 450 Air flow [m³/h]

Total power of the unit [W]

Point	KOMFORT ERV EC DB250 S14	KOMFORT ERV EC DB350 S14
1	80	147
2	67	145
3	59	144
4	43	75
5	34	73
6	28	70
7	23	21
8	22	21
9	19	20

Accessories

		KOMFORT ERV EC DB250 S14	KOMFORT ERV EC DB350 S14
G4 panel filter		FP 300x220x48 G4	FP 300x270x48 G4
F8 panel filter		FP 300x220x48 F8	FP 300x270x48 F8
Internal humidity sensor	•	FS2	FS2
CO2 sensor with indication) 	CD-1	CD-1
CO ₂ sensor	3	CD-2	CD-2
Humidity sensor		HR-S	HR-S
Air damper		VKA 150	VKA 150
Electric actuator		LF230	LF230

KOMFORT Ultra S3 250 S3 white

Compact heat recovery air handling units

Features

- Air handling units for efficient supply and exhaust ventilation in flats, houses, cottages and other buildings.
- Heat and humidity recovery reduces ventilation heat losses in the cold season and the load on the air conditioners in the hot season.
- Control of air exchange for creating comfortable indoor microclimate.
- Compatible with round Ø 125 mm air ducts.

Design

- The casing of the unit is made of double skinned white painted metal panels, internally filled with 20 mm, mineral wool layer for heat and sound insulation.
- The spigots are located at the top of the unit and are rubber sealed for airtight connection to the air ducts.
- The hinged panel of the casing ensures easy access to the unit internals for service works including cleaning, filter replacement, etc.

Fans

- Asynchronous external rotor motors and centrifugal impellers with backward curved blades are used for air supply and exhaust.
- Integrated motor overheating protection with automatic restart.
- Dynamically balanced impellers.
- Equipped with ball bearings for longer service life.
- Reliable and quiet operation.

Heat Recovery

• The **KOMFORT Ultra S3 250-E S3 white** unit is equipped with a plate enthalpy cross-flow heat exchanger made of polymerized cellulose that recovers heat and humidity.

- Due to humidity recovery the enthalpy heat exchanger produces no condensate.
- The air flows are fully separated within the heat exchangers. Odours and contaminants contained in the extract air are not transferred to the supply air flow.
- Heat recovery is based on heat and/or humidity transfer through the plates of the heat exchanger. In the cold season supply air is heated in the heat exchanger by transferring the heat energy of warm and humid extract air to the cold fresh air. Heat recovery minimizes heat losses, which reduces the cost of space heating.
- In summer the heat exchanger performs reverse and intake air is cooled in the heat exchanger by the cooled extract air. This reduces load on air conditioners and saves electricity.
- In summer, when the indoor and outdoor temperature difference is low heat recovery is not reasonable. In this case the heat exchanger can be temporary replaced with a summer block for warm seasons (available separately).

Air Filt<u>ration</u>

- Two built-in G4 and F8 filters provide efficient supply air filtration.
- The G4 filter is used for extract air filtration.

Control and Automation

- Turning the unit on/off from the control panel.
- Selecting ventilation mode three speeds: minimum, medium, maximum.
- Freeze protection of the heat exchanger by means of turning off the supply fan during defrosting.

Mounting

- The units can be fixed to the wall, ceiling or mounted on the floor using the mounting brackets.
- While mounting provide free access to the service panel for filter replacement and servicing.
- Due to universal casing design both left and right mounting is possible. It requires swapping the service and the back panel.

Designation key	/							
Serie	Unit type	Spigot modification	Modification	Rated air flow [m³/h]		Heat exchanger type	Control	Casing
KOMFORT	Ultra: compact unit	S: vertical spigot orientation	3	250	-	E: energy recovery	S3: multi speed switch	white: painted steel

Overall Dimensions [mm]							
Model	D	В	н	H1	L	L1	
KOMFORT Ultra S3 250-E S3 white	125	300	443	490	713	43	

Ordering Information					
Part Number	Model	Description			
BLAKOMFORTULTRAS3250-ES3	KOMFORT Ultra S3 250-E S3 white	WALL/FLOOR MOUNTED COMPACT ENERGY AHU			

85

Technical Data

Parameters	KOMFORT Ultra S3 250-E S3 white
Voltage [V/50 (60) Hz]	1 ~ 220-240
Power [W]	176
Current [A]	0.8
Maximum air flow [m³/h (l/s)]	290 (81)
RPM [min ⁻¹]	1550
Sound pressure level at 3 m [dBA]	28-47
Transported air temperature [°C]	-25+60
Insulation	20 mm, mineral wool
Extract filter	G4
Supply filter	F8+G4
Connected air duct diameter [mm]	125
Heat recovery efficiency [%]	50-73
Humidity recovery efficiency [%]	27-45
Heat exchanger type	cross-flow
Heat exchanger material	polymerized cellulose

Accessories		
		KOMFORT Ultra S3 250-E S3 white
G4 panel filter		FP 240x184x40 G4
F8 panel filter		FP 240x184x40 F8
Silencer	0	SD 125
Silencer		SDF 125
Backdraft air damper		VRV 125
Air damper		VK 125
Summer block		SB C4 200/240

KOMFORT Ultra L3 250 S3 white

Compact heat recovery air handling units

Features

- Air handling units for efficient supply and exhaust ventilation in flats, houses, cottages and other buildings.
- Heat and humidity recovery reduces ventilation heat losses in the cold season and the load on the air conditioners in the hot season.
- Control of air exchange for creating comfortable indoor microclimate.
- Compatible with round Ø 125 mm air ducts.

Design

- The casing of the unit is made of double skinned white painted metal panels, internally filled with 20 mm mineral wool layer for heat- and sound insulation.
- The spigots for connection to the air ducts are located at the side of the unit.
 The hinged panel of the casing ensures easy access to the unit internals for service works including cleaning, filter replacement, etc.

Fans

- Asynchronous external rotor motors and centrifugal impellers with backward curved blades are used for air supply and exhaust.
- Integrated motor overheating protection with automatic restart.
- Dynamically balanced impellers.
- Equipped with ball bearings for longer service life.
- Reliable and quiet operation.

Heat Recovery

- The KOMFORT Ultra L3 250-E S3 white unit is equipped with a plate enthalpy cross-flow heat exchanger made of polymerized cellulose that recovers heat and humidity.
- Due to humidity recovery the enthalpy heat exchanger produces no condensate.
- The air flows are fully separated within the heat exchangers. Odours and contaminants contained in the extract air are not transferred to the supply air flow.
- Heat recovery is based on heat and/or humidity transfer through the plates of the heat exchanger. In the cold season supply air is heated in the heat exchanger by transferring the heat energy of warm and humid extract air to the cold fresh air. Heat recovery minimizes heat losses, which reduces the cost of space heating.
- In summer the heat exchanger performs reverse and intake air is cooled in the heat exchanger by the cooled extract air. This reduces load on air conditioners and saves electricity.
- In summer, when the indoor and outdoor temperature difference is low heat recovery is not reasonable. In this case the heat exchanger can be temporary replaced with a summer block for warm seasons (available separately).

Air Filtration

- Two built-in G4 and F8 filters provide efficient supply air filtration.
- The G4 filter is used for extract air filtration.

Control and Automation

- Turning the unit on/off from the control panel.
- Selecting ventilation mode three speeds: minimum, medium, maximum.
- Freeze protection of the heat exchanger by means of turning off the supply fan during defrosting.

Mounting

- The units can be fixed to the wall, ceiling or mounted on the floor using the mounting brackets.
- While mounting provide free access to the service panel for filter replacement and servicing.
- Due to universal casing design both left and right mounting is possible. It requires swapping the service and the back panel.

Designation ke	у							
Serie	Unit type	Spigot modification	Modification	Rated air flow [m³/h]		Heat exchanger type	Control	Casing
KOMFORT	Ultra: compact unit	L: horizontal spigot orientation	3	250	-	E: energy recovery	S3: multi speed switch	white: painted steel

Overall Dimensions [mm]						
Model	D	В	н	H1	L	L1
KOMFORT Ultra L3 250-E S3 white	125	300	443	43	713	810

Ordering Information					
Part Number	Model	Description			
BLAKOMFORTULTRAL3250-ES3	KOMFORT Ultra L3 250-E S3 white	WALL/FLOOR MOUNTED COMPACT ENERGY AHU			

Technical Data

Parameters	KOMFORT Ultra L3 250-E S3 white
Voltage [V/50 (60) Hz]	1 ~ 220-240
Power [W]	176
Current [A]	0.8
Maximum air flow [m³/h (l/s)]	290 (81)
RPM [min ⁻¹]	1550
Sound pressure level at 3 m [dBA]	28-47
Transported air temperature [°C]	-25+60
Insulation	20 mm, mineral wool
Extract filter	G4
Supply filter	F8+G4
Connected air duct diameter [mm]	125
Heat recovery efficiency [%]	50-73
Humidity recovery efficiency [%]	27-45
Heat exchanger type	cross-flow
Heat exchanger material	polymerized cellulose

Accessories	
	KOMFORT Ultra L3 250-E S3 white
G4 panel filter	FP 240x184x40 G4
F8 panel filter	FP 240x184x40 F8
Silencer	SD 125
Silencer	SDF 125
Backdraft air damper	VRV 125
Air damper	VK 125
Summer block	SB C4 200/240

KOMFORT Ultra EC S2 300

Compact heat recovery air handling units

Features

- Air handling units for efficient supply and exhaust ventilation in flats, houses, cottages and other buildings.
- The heat recovery technology is used to minimize ventilation heat losses.
- Control of air exchange for creating comfortable indoor microclimate.
- Compatible with round Ø 125 mm air ducts.

Design

- The casing of **KOMFORT Ultra EC S2 300-E S14 white** is made of double skinned white painted metal panels, internally filled with 20 mm mineral wool layer for heat- and sound insulation.
- The spigots are located at the top of the unit and are rubber sealed for airtight connection to the air ducts.
- The hinged panel of the casing ensures easy access to the unit internals for service works including cleaning, filter replacement, etc.

Fans

- The unit is equipped with high efficient external rotor EC motors and centrifugal impellers with forward curved blades.
- EC motors have the best power consumption to air flow ratio and meet the latest demands concerning energy saving and high efficient ventilation.
- EC motors are featured with high performance, low noise level and totally controllable speed range.
- The impellers are dynamically balanced.

Heat Recovery

• The **KOMFORT Ultra EC S2 300-E ... white** unit is equipped with an enthalpy plate cross-flow heat exchanger for enegry (heat and humidity) recovery. Due to humidity recovery condensate is not generated in the enthalpy heat exchanger.

- The air flows are completely separated in the heat exchanger. Thus smells
 and contaminants are not transferred from the extract air to the supply air.
- Heat recovery is based on heat and/or humidity transfer through the heat exchanger plates. In the cold season supply air is heated in the heat exchanger by transferring the heat energy of warm and humid extract air to the cold fresh air. Heat recovery minimizes ventilation heat losses and heating costs respectively.
- In the warm season the heat exchanger performs reverse and intake air is cooled in the heat exchanger by the cool extract air. That reduces operation load on air conditioners and saves electricity.
- When the indoor and outdoor temperature difference is insignificant, heat recovery is not reasonable. In this case the heat exchanger can be temporary replaced with a summer block for the warm season (available as a specially ordered accessory).

FREEZE PROTECTION

• The integrated automatic freeze protection is used to prevent freezing of the heat exchanger in the cold season. The supply fan turns off according to the temperature sensor to get the heat exchanger warmed up with extract air. After that the supply fan turns on and the unit continues to run in the standard mode.

Air Filtration

- Two built-in G4 and F8 filters provide efficient supply air filtration.
- The G4 filter is used for extract air filtration.

Control and Automation

- The **KOMFORT Ultra EC S2 300-E S14 white** units have an integrated control system with a wall-mounted control panel S14 with a LED indication.
 - The S14 control panel functions:
 - Unit On/Off.
 - Speed selection: Low, Medium or High.
 - Activation of the summer ventilation mode: The supply fan stops and the extract fan continues its operation with no heat recovery.
 - Alarm indication.
 - Filter maintenance indication.

The KOMFORT Ultra EC S2 300-E S14 white unit is equipped with a USB connector (Type B) and can be connected to a PC for configuring the advanced settings in a special software:

- Fan speed adjustment from 0 to 100 %. Each speed is individually adjusted for the supply and the extract fans.
- Operation control on feedback from the FS2 duct humidity sensor (to be ordered separately).
- Unit operation setting according to the external relay (to be ordered separately).
- Temperature setting for freeze protection system activation.
- Control and operation adjustment of the filter maintenance timer.
- External control unit and humidity level control.
- Software version upgrading.

Designation key								
Series	Unit type	Motor type	Spigot modification	Insulation	Rated air flow [m³/h]	Heat exchanger type	Control	Casing
KOMFORT	Ultra: compact unit	EC: electroni- cally commu- tated motor	S: vertical spigot orientation	2: Insulation 20 mm	300	E: energy recovery	S14: sensor control panel with LED indication	white: painted steel

Overall Dimensions [mm]

Model	D	В	Н	H1	L	LI
KOMFORT Ultra EC S2 300-E S14 white	125	300	443	490	713	63

KOMFORT Ultra EC S2 300-E S14 white

Part Number	Model	Description
BLAKOMFORTULTRAECL2300-ES14	KOMFORT Ultra EC S2 300-E S14 white	EC MOTORS WALL/FLOOR MOUNTED COMPACT ENERGY AHL

Technical Data

Parameters	KOMFORT Ultra EC S2 300-E S14 white
Voltage [V / 50 (60) Hz]	1 ~ 230
Power [W]	165
Current [A]	1.3
Maximum air flow [m³/h (l/s)]	300 (83)
RPM [min ⁻¹]	2050
Sound pressure level at 3 m [dBA]	33
Transported air temperature [°C]	-25+40
Insulation	20 mm mineral wool
Extract filter	G4
Supply filter	G4, F8
Connected air duct diameter [mm]	125
Weight [kg]	28
Heat recovery efficiency [%]*	51-73
Humidity recovery efficiency [%]	26-45
Heat exchanger type	cross-flow
Heat exchanger material	enthalpy
SEC class for S2 automation	C
SEC class for S14 automation	A
ErP	2016, 2018

* Heat recovery efficiency is specified in compliance with the EN 13141-7.

Sound power level, A-weighted	Total	Octav 63	ve frequ 125	uency b 250	and [H 500	z] 1000	2000	4000	8000	LpA 3 m [dBA]	LpA 1 m [dBA]
LwA to supply inlet [dBA]	56	48	43	53	44	44	40	26	24		
LwA to supply outlet [dBA]	71	53	53	68	65	60	59	52	51		
LwA to exhaust inlet [dBA]	57	43	51	52	52	45	37	26	21		
LwA to exhaust outlet [dBA]	72	53	60	66	67	61	62	55	48		
LwA to environment [dBA]	53	33	44	47	50	44	38	29	24	33	43

Data provided for point 1 of the air flow diagram

Total power. Total sound pressure level.

Point	Total power of the unit [W]	Sound pressure level at 3 m (1 m) [dBA]
1	150	33 (43)
2	138	33 (43)
3	121	32 (42)
4	52	31 (41)
5	48	28 (38)
6	41	27 (37)
7	17	27 (37)
8	16	23 (33)
9	14	23 (33)

Accessories		
		KOMFORT Ultra EC S2 300-E S14 white
G4 panel filter		FP 240x184x40 G4
F8 panel filter		FP 240x184x40 F8
Internal humidity sensor	¢ UE	FS2
CO2 sensor with indication		CD-1
CO ₂ sensor	a	CD-2
Humidity sensor		HR-S
Silencer		SD 125
Silencer		SDF 125
Backdraft air damper		VRV 125
Air damper		VKA 125
Electric actuator		LF230
Summer block		SB C4 200/240

KOMFORT Ultra EC L2 300

Compact heat recovery air handling units

Features

BLAUBERG

- Air handling units for efficient supply and exhaust ventilation in flats, houses, cottages and other buildings.
- The heat recovery technology is used to minimize ventilation heat losses.
- Control of air exchange for creating comfortable indoor microclimate.
- Compatible with round Ø 125 mm air ducts.

Design

- The casing of **KOMFORT Ultra EC L2 300-E S14 white** is made of double skinned white painted metal panels, internally filled with 20 mm mineral wool layer for heat- and sound insulation.
- The spigots are located at the sides of the unit and are equipped with rubber seals for airtight connection to the air ducts.
- The hinged panel of the casing ensures easy access to the unit internals for service works including cleaning, filter replacement, etc.

Fans

- The unit is equipped with high efficient external rotor EC motors and centrifugal impellers with forward curved blades.
- EC motors have the best power consumption to air flow ratio and meet the latest demands concerning energy saving and high efficient ventilation.
- EC motors are featured with high performance, low noise level and totally controllable speed range.
- The impellers are dynamically balanced.

Heat Recovery

• The KOMFORT Ultra EC L2 300-E ... white unit is equipped with an enthalpy plate cross-flow heat exchanger for enegry (heat and humidity) recovery. Due to humidity recovery condensate is not generated in the enthalpy heat exchanger.

- The air flows are completely separated in the heat exchanger. Thus smells and contaminants are not transferred from the extract air to the supply air.
- Heat recovery is based on heat and/or humidity transfer through the heat exchanger plates. In the cold season supply air is heated in the heat exchanger by transferring the heat energy of warm and humid extract air to the cold fresh air. Heat recovery minimizes ventilation heat losses and heating costs respectively.
- In the warm season the heat exchanger performs reverse and intake air is cooled in the heat exchanger by the cool extract air. That reduces operation load on air conditioners and saves electricity.
- When the indoor and outdoor temperature difference is insignificant, heat recovery is not reasonable. In this case the heat exchanger can be temporary replaced with a summer block for the warm season (available as a specially ordered accessory).

FREEZE PROTECTION

• The integrated automatic freeze protection is used to prevent freezing of the heat exchanger in the cold season. The supply fan turns off according to the temperature sensor to get the heat exchanger warmed up with extract air. After that the supply fan turns on and the unit continues to run in the standard mode.

Air Filtration

- Two built-in G4 and F8 filters provide efficient supply air filtration.
- The G4 filter is used for extract air filtration.

Control and Automation

- The **KOMFORT Ultra EC L2 300-E S14 white** units have an integrated control system with a wall mounted control panel S14 with a LED indication.
 - The S14 control panel functions:
 - Unit On/Off.
 - Speed selection: Low, Medium or High.
 - Activation of the summer ventilation mode: The supply fan stops and the extract fan continues its operation with no heat recovery.
 - Alarm indication.
 - Filter maintenance indication.

The KOMFORT Ultra EC L2 300-E S14 white unit is equipped with a USB connector (Type B) and can be connected to a PC for configuring the advanced settings in a special software:

- Fan speed adjustment from 0 to 100 %. Each speed is individually adjusted for the supply and the extract fans
- Operation control on feedback from the FS2 duct humidity sensor (to be ordered separately)
- Unit operation setting according to the external control unit (to be ordered separately)
- Temperature setting for freeze protection system activation
- Control and operation adjustment of the filter maintenance timer
- External relay status and humidity level control
- Software version upgrading

Designation key									
Series	Unit type	Motor type	Spigot modification	Insulation	Rated air flow [m³/h]		Heat exchanger type	Control	Casing
KOMFORT	Ultra: compact unit	EC: electroni- cally commu- tated motor	L: horizontal spigot orientation	2: Insulation 20 mm	300	-	E: energy recovery	S14: sensor control panel with LED indication	white: painted steel

Overall Dimensions [mm]

Model	D	В	Н	H1	L	LI
KOMFORT Ultra EC L2 300-E S14 white	125	300	443	63	713	810

KOMFORT Ultra EC L2 300-E S14 white

Ordering Information	n	
Part Number	Model	Description
BLAKOMFORTULTRAECS2300-ES14	KOMFORT Ultra EC L2 300-E S14 white	EC MOTORS WALL/FLOOR MOUNTED COMPACT ENERGY AHU

Technical Data

Parameters	KOMFORT Ultra EC L2 300-E S14 white
Voltage [V / 50 (60) Hz]	1 ~ 230
Power [W]	165
Current [A]	1.3
Maximum air flow [m³/h (l/s)]	300 (83)
RPM [min ⁻¹]	2050
Sound pressure level at 3 m [dBA]	33
Transported air temperature [°C]	-25+40
Insulation	20 mm mineral wool
Extract filter	G4
Supply filter	G4, F8
Connected air duct diameter [mm]	125
Weight [kg]	28
Heat recovery efficiency [%]*	51-73
Humidity recovery efficiency [%]	26-45
Heat exchanger type	cross-flow
Heat exchanger material	enthalpy
SEC class for S2 automation	C
SEC class for S14 automation	A
ErP	2016, 2018

* Heat recovery efficiency is specified in compliance with the EN 13141-7.

Sound power level, A-weighted	Total	Octav 63	re frequ 125	iency b 250	and [H 500	z] 1000	2000	4000	8000	LpA 3 m [dBA]	LpA 1 m [dBA]
LwA to supply inlet [dBA]	56	48	43	53	44	44	40	26	24		
LwA to supply outlet [dBA]	71	53	53	68	65	60	59	52	51		
LwA to exhaust inlet [dBA]	57	43	51	52	52	45	37	26	21		
LwA to exhaust outlet [dBA]	72	53	60	66	67	61	62	55	48		
LwA to environment [dBA]	53	33	44	47	50	44	38	29	24	33	43

Data provided for point 1 of the air flow diagram

Total power. Total sound pressure level.

Point	Total power of the unit [W]	Sound pressure level at 3 m (1 m) [dBA]
1	150	33 (43)
2	138	33 (43)
3	121	32 (42)
4	52	31 (41)
5	48	28 (38)
6	41	27 (37)
7	17	27 (37)
8	16	23 (33)
9	14	23 (33)

Accessories		
		KOMFORT Ultra EC L2 300-E S14 white
G4 panel filter		FP 240x184x40 G4
F8 panel filter		FP 240x184x40 F8
Internal humidity sensor	e He	FS2
CO2 sensor with indication		CD-1
CO ₂ sensor	a	CD-2
Humidity sensor		HR-S
Silencer		SD 125
Silencer		SDF 125
Backdraft air damper		VRV 125
Air damper		VKA 125
Electric actuator	Carlo and C	LF230
Summer block		SB C4 200/240

Decor ... G

Plastic gravity grilles

Features

- Outer wall mounting
- Equipped with gravity louvre shutters for back flow prevention
 Temperature- and UV-resistant antistatic plastic
- Flush mounted fasteners
- Easy maintenance

Overall Dimensions and Mounting

Model	Dimens	ions [m	Air pace [m²]			
Model	a	b	ι	L1	ØD	All pass [III-]
Decor 155x155/100G	154	110	15	-	100	0.0096
Decor 185x185/125G	186	142	15	45	125	0.0113
Decor 250x250/150G	250	214	15	41	150	0.0177-0.056

Part Number	Model	Description
BLABGR100WHG	Decor 155x155/100G	GRILLE, GRAVITY, WHITE, 100 mm
BLABGR125WHG	Decor 185x185/125G	GRILLE, GRAVITY, WHITE, 125 mm
BLABGR150WHG	Decor 250x250/150G	GRILLE, GRAVITY, WHITE, 150 mm

Decor Plastic fixed grilles

Features

- Wall or ceiling mounting
- Temperature- and UV-resistant antistatic plastic
 Flush mounted fasteners
- Equipped with a protecting insect screen (s)
- Easy maintenance

Overall Dimensions and Mounting

						Air pace [m2]
a	b	L	ι	e×f	ØD	All pass [III-]
154	154	-	15	110 × 110	100	0.0067
186	186	45	15	142 × 142	125	0.0083
186	186	45	15	142 × 142	150	0.0083
	a 154 186 186	ab154154186186186186	a b L 154 154 - 186 186 45 186 186 45	a b L l 154 154 - 15 186 186 45 15 186 186 45 15	a b L l exf 154 154 - 15 110 × 110 186 186 45 15 142 × 142 186 186 45 15 142 × 142	a b L l e×f Ø D 154 154 - 15 110 × 110 100 186 186 45 15 142 × 142 125 186 186 45 15 142 × 142 150

Part Number	Model	Description
BLABGR100WHF	Decor 155x155/100s	GRILLE, FIXED, WHITE, 100 mm - C/W INSECT MESH
BLABGR125WHF	Decor 185x185/125s	GRILLE, FIXED, WHITE, 125 mm - C/W INSECT MESH
BLABGR150WHF	Decor 185x185/150s	GRILLE, FIXED, WHITE, 150 mm - C/W INSECT MESH

Decor ... HK

Plastic weatherproof cowl

Features

- Outer wall mounting
- Gravity backdraft damper for back flow prevention
- Protection grille against birds and rodents
- Temperature- and UV-resistant antistatic plastic
- ${\color{black}\bullet}$ Flush mounted fasteners
- Easy maintenance

Overall Dimensions and Mounting

Part Number	Model	Description
BLABGR100C	Decor 155x155/100HK	GRILLE, COWL, WEATHERPROOF WHITE, 100 mm
BLABGR125C	Decor 185x185/125HK	GRILLE, COWL, WEATHERPROOF WHITE, 125 mm
BLABGR150C	Decor 185x185/150HK	GRILLE, COWL, WEATHERPROOF WHITE, 150 mm

Decor ... EG

Plastic eggcrate grilles

Features

- Wall mounting
- Easy maintenance
- Connection with rectangular or round ducts
- ABS plastic
- Temperature resistant, UV protected antistatic plastic
- Designed for wall mounting in conjunction with rectangular or round ducts and is a suitable extraction fan.

Overall Dimensions

Model	Dimen	sions [m	Air pace [m2]			
Model	□a	🗆 b	ØD	н	H1	All pass [III-]
DECOR-EG 155x155/100s	153	110	99.5	30	15	0 0072
DECOR-EG 185x185/125c	196	142	12/ 0	20	15	0.0072
DECOR-EG 105x105/1253	100	142	124.0	30	15	0.0112
DECOR-EG 185X185/150S	186	142	149.6	35	15	0.0162

Part Number	Model	Description
BLABGR100WHE	DECOR-EG 155x155/100s	GRILLE, EGGCRATE, WHITE, 100 mm - C/W INSECT MESH
BLABGR125WHE	DECOR-EG 185x185/125s	GRILLE, EGGCRATE, WHITE, 125 mm - C/W INSECT MESH
BLABGR150WHE	DECOR-EG 185x185/150s	GRILLE, EGGCRATE, WHITE, 150 mm - C/W INSECT MESH

DPR Plastic supply and exhaust diffusers

Features

- For supply ventilation, air conditioning and heating.
- Designed for ceiling or soffit mounting
- Used to arrange correct air circulation in premises.
- Temperature resistant, UV protected antistatic plastic

Design

GRILLES

- Made of high quality plastic.
- Special aerodynamic disk valve design ensures uniform air distribution.
- Easy mounting with a mounting flange and a lock ring. The internal part has a sealing ring for more tight fit.
- A built-in insect screen.
- Equipped with mounting flanges with a lock ring for easy connection to round \varnothing 100-150 mm air ducts.

Overall Dimensions

Madal	Dimensio	Air 2200 [m2]			
Model	D	D1	н	H1	Air pass [iii-]
DPR 100	100	141	71	12.5	0.006
DPR 125	125	166	72	14	0.010
DPR 150	150	188	72	15	0.014

Ordering Information

Part Number	Model	Description
BLABGR100RG	DPR 100	GRILLE - ROUND - WHITE, 100 mm - C/W INSECT MESH
BLABGR125RG	DPR 125	GRILLE - ROUND - WHITE, 125 mm - C/W INSECT MESH
BLABGR150RG	DPR 150	GRILLE - ROUND - WHITE, 150 mm - C/W INSECT MESH

104

Plate Mounted Axial Fans

Application

• Suitable for wall mounted applications.

Design

 Galvanised steel fan casing, incorporate a corrosion resistant inlet finger guard as standard.

Motor

- TEFC type in 415 V three-phase only. Motors are speed controllable using variable frequency control.
- External rotor motor in 240 V single phase & 415 V three phase, four and six pole options. Motors are speed controllable.
- Options include motors complying with Exe, Exd, Exn etc. Standards, no external terminal box supplied for these options.

Protection

• Standard motors fitted are IP55. Higher degrees of protection are available as options if required.

Impeller

• High efficiency adjustable pitch axial impeller. Impeller options include Aluminium, GRP/Nylon and Anti-static.

Technical Data & Specification

• Email **info@blaubergventilation.com.au** for all technical data, fan curves, noise specification or any other information required.

SS & Heavy Duty Roof Mounted Axial Fans – Vertical Discharge

Application

• Designed for roof installations, up to a maximum pitch of 15 degrees. They are suitable for wide range of ventilation applications including industrial and commercial requiring medium to large air volumes and incorporate low loss non-return weather shutter.

Design

• High efficiency axial impeller with TEFC motor. Hot Dipped Galvanised steel fan casing with galvanised sheet steel vertical cowl.

Motor

• Motors are TEFC type and available in 415V three-phase only. Motors are speed controllable using variable frequency control. Options include motors complying with Exe, Exd, Exn etc. Standards.

Protection

• Standard motors fitted are IP55. Higher degrees of protection are available as options if required.

Impeller

• High efficiency adjustable pitch axial impeller. Impeller options include Aluminium, GRP/Nylon and Anti-static.

Technical Data & Specification

Inline Axial Fans

Application

• Suitable for mounting in any position, has flanged ends for ease of installation to ductwork. These units incorporate a viewing port and external terminal box. Mounting feet, inlet cones and matching flanges are also available as optional extras.

Design

• Mild steel fan casing with hot-dip galvanised finish.

Motor

- TEFC type in 415V three-phase only. Motors are speed controllable using variable frequency control.
- External rotor motor in 240V single phase & 415V three phase, four and six pole options. Motors are speed controllable.
- Options include motors complying with Exe, Exd, Exn etc. Standards, no external terminal box supplied for these options.

Protection

• Standard motors fitted are IP55. Higher degrees of protection are available as options if required.

Impeller

• High efficiency adjustable pitch axial impeller. Impeller options include Aluminium, GRP/Nylon and Anti-static.

Technical Data & Specification

• Email **info@blaubergventilation.com.au** for all technical data, fan curves, noise specification or any other information required.

AXIAL FANS

Inline Axial Fans Ex'd'

Application

- Ex'd axial fans incorporate a flameproof motor and anti-static impellor. Typical applications include battery exhaust rooms and paint spray booths.
- Mounting feet, inlet cones and matching flanges are available as options.

Design

• Mild steel fan casing with hot-dip galvanised finish.

Motor

• TEFC type in 415V three-phase only. Motors are speed controllable using variable frequency control.

Protection

o IP55

Impeller

• High efficiency anti-static axial impellor.

Technical Data & Specification

Plate Mounted Axial Fans

Application

- Suitable for wall or panel mounted applications.
- Incorporated finger guard on the fan inlet comes as standard.

Design

• Galvanised steel fan casing with powder coated finish on most sizes.

Motor

- External rotor motor in 240V single phase and 415V three phase with two, four and six pole options. Motors are speed controllable.
- All three phase motors incorporate 2-speed Star/Delta motors.

Protection

• IP44 with integral thermal protection.

Impeller

• High efficiency fixed pitch axial impellor.

Technical Data & Specification

• Email info@blaubergventilation.com.au for all technical data, sizes, fan curves, noise specification or any other information required.

AXIAL FANS

Plate Mounted Axial Fans Ex'd'

Application

- The pre-engineered plate mounted fans incorporate a flameproof motor and anti-static impellor. Typical applications include battery exhaust rooms and paint spray booths.
- Incorporated finger guard on the fan inlet comes as standard.

Design

• Galvanised steel fan casing.

Motor

• Available in 240V single phase only. Motors are not speed controllable.

Impeller

• High efficiency anti-static axial impellor.

Technical Data & Specification

Roof Air Cowl – Vertical Discharge

Application

• Designed for roof installations, they incorporate low loss design and are suitable for most general ventilation exhaust systems.

Design

- Galvanised steel base, windband and non-return shutter. Standard colour is "Dune" and other colours are available on request.
- Lifting lugs are provided for ease of lifting and installation and are standard on all sizes.
- Optional aluminium non return shutters are available for low airflow applications.

Technical Data & Specification

Roof Air Cowl – Horizontal Discharge

Application

• Designed for roof installations, they incorporate low loss design and are suitable for most general ventilation exhaust systems.

Design

- Galvanised steel base and cowl. Larger sizes have galvanised steel base UV stabilised cowl. Standard colour is "Dune" and other colours are available on request.
- Lifting lugs are provided for ease of lifting and installation on all larger sizes.

Technical Data & Specification

Roof Mounted Axial Fans – Horizontal Discharge

Application

• Designed for roof installations, up to a maximum pitch of 15 degrees. They are suitable for wide range of ventilation applications including industrial and commercial requiring small to large air volumes and incorporate low loss non-return weather shutter.

Design

• Galvanised steel base and UV stabilised cowl. Colour 'Dune' as standard, other colours available upon request.

Motor

- TEFC type in 415V three-phase only. Motors are speed controllable using variable frequency control.
- External rotor motor in 240V single phase & 415V three phase, four and six pole options. Motors are speed controllable.
- Options include motors complying with Exe, Exd, Exn etc. Standards, no external terminal box supplied for these options.
- Motors are TEFC type and available in 415V three-phase only. Motors are speed controllable using variable frequency control. Options include motors complying with Exe, Exd, Exn etc. Standards.

Protection

• Standard motors fitted are IP55. Higher degrees of protection are available as options if required.

Impeller

• High efficiency adjustable pitch axial impeller. Impeller options include Aluminium, GRP/Nylon and Anti-static.

Technical Data & Specification

Roof Mounted Axial Fans – Supply Air

Application

• Designed for roof installations, up to a maximum pitch of 15 degrees. They are suitable for wide range of ventilation applications including industrial and commercial requiring small to large air volumes.

Design

• Galvanised steel base and UV stabilised cowl.

Motor

- TEFC type in 415V three-phase only. Motors are speed controllable using variable frequency control.
- External rotor motor in 240V single phase & 415V three phase, four and six pole options. Motors are speed controllable.
- Options include motors complying with Exe, Exd, Exn etc. Standards, no external terminal box supplied for these options.

Protection

• Standard motors fitted are IP55. Higher degrees of protection are available as options if required.

Impeller

• High efficiency adjustable pitch axial impeller. Impeller options include Aluminium, GRP/Nylon and Anti-static.

Technical Data & Specification

Roof Mounted Axial Fans – Vertical Discharge

Application

• Designed for roof installations, up to a maximum pitch of 15 degrees. They are suitable for wide range of ventilation applications including industrial and commercial requiring small to large air volumes and incorporate low loss non-return weather shutter.

Design

• Galvanised steel base and powder coated cowl.

Motor

- TEFC type in 415V three-phase only. Motors are speed controllable using variable frequency control.
- External rotor motor in 240V single phase & 415V three phase, four and six pole options. Motors are speed controllable.
- Options include motors complying with Exe, Exd, Exn etc. Standards, no external terminal box supplied for these options.

Protection

• Standard motors fitted are IP55. Higher degrees of protection are available as options if required.

Impeller

• High efficiency adjustable pitch axial impeller. Impeller options include Aluminium, GRP/Nylon and Anti-static.

Technical Data & Specification

• Email **info@blaubergventilation.com.au** for all technical data, fan curves, noise specification or any other information required.

ROOF FANS

Roof Mounted Centrifugal Fans – Horizontal Discharge

Application

• Designed for roof installations, up to a maximum pitch of 15 degrees, they are suitable for a wide range of ventilation applications including domestic, industrial and commercial requiring small to large air volumes and medium to high pressures.

Design

• Galvanised steel base and UV stabilised cowl.

Motor

- TEFC type in 415V three-phase only. Motors are speed controllable using variable frequency control.
- External rotor motor in 240V single phase & 415V three phase, four and six pole options. Motors are speed controllable.
- Options include motors complying with Exe, Exd, Exn etc. Standards, no external terminal box supplied for these options.

Protection

• Standard motors are rated to IP54. Higher levels of protection are available.

Impeller

• High efficiency backward curved impellor.

Technical Data & Specification

Roof Mounted Centrifugal Fans – Supply Air

Application

• Designed for roof installations, up to a maximum pitch of 15 degrees, they are suitable for a wide range of ventilation applications including domestic, industrial and commercial requiring small to large air volumes and medium to high pressures.

Design

• Galvanised steel base and UV stabilised cowl.

Motor

• External rotor motor in 240V single phase & 415V three phase, four and six pole options. Motors are speed controllable.

Protection

• IP54 with integral thermal protection.

Impeller

• High efficiency backward curved impellor.

Technical Data & Specification

• Email **info@blaubergventilation.com.au** for all technical data, fan curves, noise specification or any other information required.

ROOF FANS

Roof Mounted Centrifugal Fans – Vertical Discharge

Application

• Designed for roof installations, up to a maximum pitch of 15 degrees, they are suitable for a wide range of ventilation applications including domestic, industrial and commercial requiring small to large air volumes and medium to high pressures.

Design

• Galvanised steel base and powder coated cowl.

Motor

- TEFC type in 415V three-phase only. Motors are speed controllable using variable frequency control.
- External rotor motor in 240V single phase & 415V three phase, four and six pole options. Motors are speed controllable.
- Options include motors complying with Exe, Exd, Exn etc. Standards, no external terminal box supplied for these options.

Protection

Standard motors are rated to IP54. Higher levels of protection are available.
Metal construction complies with the requirements or AS1668 for kitchen exhaust applications.

Impeller

• High efficiency backward curved impellor.

Technical Data & Specification

Roof Mounted Centrifugal TEFC Fans – Vertical Discharge

Application

o Designed for roof installations, up to a maximum pitch of 15 degrees, they are suitable for a wide range of ventilation applications including domestic, industrial and commercial requiring small to large air volumes and medium to high pressures.

Design

• Galvanised steel base and powder coated cowl. Larger sizes have a galvanised steel base and UV stabilised cowl.

Motor

- TFEC type available only in 415V three phase with four, six and eight pole options. Motors are speed controllable using variable frequency control.
- Options include 2 speed motors and motors comply with Exe, Exd, Exn etc. Standards.

Protection

• Standard motors are rated to IP55. Higher levels of protection are available.

Impeller

• High efficiency backward curved impellor.

Technical Data & Specification

Short Case Axial Fans

Application

• Suitable for duct mounting in any position, with a compact flanged casing for ease of installation to ductwork.

Design

• Galvanised steel fan casing with powder coated finish.

Motor

• External rotor motor in 240V single phase & 415V three phase, four and six pole options. Motors are speed controllable.

Protection

• IP54 with integral thermal protection.

Impeller

• High efficiency fixed pitch axial impellor.

Technical Data & Specification

Square Inline Centrifugal Fans

Application

• Suitable for duct mounting in any position. They are suitable for a wide range of ventilation applications including car parks, kitchen exhaust, supply and return air where medium to high pressures are required.

Design

• Galvanised steel fan casing with flanged end connections.

Motor

- External rotor motor in 240V single phase and 415V three phase with four, six and eight pole options. Motors are speed controllable.
- All three phase motors incorporate 2-speed Star/Delta motors.

Protection

• IP54 with integral thermal protection.

Impeller

• High efficiency backward curved impellor.

Technical Data & Specification

• Email **info@blaubergventilation.com.au** for all technical data, sizes, fan curves, noise specification or any other information required.

INDUSTRIAL FANS

TEFC Square Inline Centrifugal Fans

Application

• Suitable for duct mounting in any position, they are suitable for a wide range of ventilation applications including car parks, kitchen exhaust, supply and return air where medium to high pressures are required.

Design

• Galvanised steel fan casing with flanged end connections.

Motor

- TFEC type available only in 415V three phase with four, six and eight pole options. Motors are speed controllable using variable frequency control.
- Options include 2 speed motors and motors comply with Exe, Exd, Exn etc. Standards.

Protection

• IP55 with integral thermal protection. Higher degrees of protection are available.

Impeller

• High efficiency backward curved impellor.

Technical Data & Specification

Duct Fittings

BLAUBERG Y JUNCTIONS – PLASTIC NON INSULATED

Product Code	Product Description
BLA644	150/100/100 Y junction - non insulated
BLA666	150/150/150 Y junction - non insulated
BLA1088	250/200/200 Y junction - non insulated
BLA1288	300/200/200 Y junction - non insulated
BLA121010	300/250/250 Y junction - non insulated
BLA121212	300/300/300 Y junction - non insulated
BLA141010	350/250/250 Y junction - non insulated
BLA141210	350/300/250 Y junction - non insulated
BLA141212	350/300/300 Y junction - non insulated
BLA141410	350/350/250 Y junction - non insulated
BLA141414	350/350/350 Y junction - non insulated

BLAUBERG Y JUNCTIONS – PLASTIC INSULATED

Product Code	Product Description
BLA644INS	150/100/100 Y junction – insulated
BLA666INS	150/150/150 Y junction – insulated
BLA1088INS	250/200/200 Y junction - insulated
BLA1288YINS	300/200/200 Y junction – insulated
BLA121010YINS	300/250/250 Y junction - insulated
BLA121212INS	300/300/300 Y junction - insulated
BLA141010YINS	350/250/250 Y junction - insulated
BLA141210INS	350/300/250 Y junction – insulated
BLA141212INS	350/300/300 Y junction – insulated
BLA141410YINS	350/350/250 Y junction - insulated
BLA141414INS	350/350/350 Y junction - insulated

BLAUBERG SINGLE BRANCH TAKE OFF – PLASTIC NON INSULATED

Product Code	Product Description
BLA666BTO	150/150/150 Branch take off – non insulated
BLA866BTO	200/150/150 Branch take off – non insulated
BLA888BTO	200/200/200 Branch take off - non insulated
BLA101010BTO	250/250/250 Branch take off – non insulated
BLA10106BTO	250/250/150 Branch take off - non insulated
BLA10108BTO	250/250/200 Branch take off - non insulated
BLA1066BTO	250/150/150 Branch take off - non insulated
BLA1086BTO	250/200/150 Branch take off - non insulated
BLA1088BTO	250/200/200 Branch take off - non insulated
BLA121010BTO	300/250/250 Branch take off - non insulated
BLA12106BTO	300/250/150 Branch take off - non insulated
BLA12108BTO	300/250/200 Branch take off - non insulated
BLA121210BTO	300/300/250 Branch take off - non insulated
BLA12126BTO	300/300/150 Branch take off - non insulated
BLA12128BTO	300/350/200 Branch take off - non insulated
BLA1288BTO	300/200/200 Branch take off - non insulated
BLA141010BTO	350/250/250 Branch take off - non insulated
BLA141210 BTO	350/300/200 Branch take off - non insulated
BLA141212 BTO	350/300/300 Branch take off - non insulated
BLA14126 BTO	350/300/150 Branch take off - non insulated
BLA14128 BTO	350/300/200 Branch take off - non insulated
BLA141410 BTO	350/350/250 Branch take off - non insulated
BLA141412 BTO	350/350/300 Branch take off - non insulated
BLA14146 BTO	350/350/150 Branch take off - non insulated
BLA14148 BTO	350/350/200 Branch take off - non insulated

BLAUBERG SINGLE BRANCH TAKE OFF - PLASTIC INSULATED

Product Code	Product Description
BLA666BTOINS	150/150/150 Branch take off - insulated
BLA866BTOINS	200/150/150 Branch take off - insulated
BLA888BTOINS	200/200/200 Branch take off - insulated
BLA101010BTOINS	250/250/250 Branch take off - insulated
BLA10106BTOINS	250/250/150 Branch take off - insulated
BLA10108BTOINS	250/250/200 Branch take off - insulated
BLA1066BTOINS	250/150/150 Branch take off - insulated
BLA1086BTOINS	250/200/150 Branch take off - insulated
BLA1088BTOINS	250/200/200 Branch take off - insulated
BLA121010BTOINS	300/250/250 Branch take off - insulated
BLA12106BTOINS	300/250/150 Branch take off - insulated
BLA12108BTOINS	300/250/200 Branch take off - insulated
BLA121210BTOINS	300/300/250 Branch take off - insulated
BLA12126BTOINS	300/300/150 Branch take off - insulated
BLA12128BTOINS	300/350/200 Branch take off - insulated
BLA1288BTOINS	300/200/200 Branch take off - insulated
BLA141010BTOINS	350/250/250 Branch take off - insulated
BLA141210BTOINS	350/300/200 Branch take off - insulated
BLA141212BTOINS	350/300/300 Branch take off - insulated
BLA14126BTOINS	350/300/150 Branch take off - insulated
BLA14128BTOINS	350/300/200 Branch take off - insulated
BLA141410BTOINS	350/350/250 Branch take off - insulated
BLA141412BTOINS	350/350/300 Branch take off - insulated
BLA14146BTOINS	350/350/150 Branch take off - insulated
BLA14148BTOINS	350/350/200 Branch take off - insulated

BLAUBERG DOUBLE BRANCH TAKE OFF - PLASTIC NON INSULATED

Product Code	Product Description
BLA8666BTO	200/150/150/150 Double branch take off - non insulated
BLA8866BTO	200/200/150/150 Double branch take off - non insulated
BLA101066BTO	250/250/150/150 Double branch take off - non insulated
BLA101086BTO	250/250/200/150 Double branch take off - non insulated
BLA101088BTO	250/250/200/200 Double branch take off - non insulated
BLA10666BTO	250/150/150/150 Double branch take off - non insulated
BLA10886BTO	250/200/200/150 Double branch take off - non insulated
BLA10888BTO	250/200/200 Double branch take off - non insulated
BLA12101010BTO	300/200/200/200 Double branch take off - non insulated
BLA121066BTO	300/250/150/150 Double branch take off - non insulated
BLA121086BTO	300/250/200/150 Double branch take off - non insulated
BLA121088BTO	300/250/200/200 Double branch take off - non insulated
BLA12121010BTO	300/300/250/250 Double branch take off - non insulated
BLA121266BTO	300/300/150/150 Double branch take off - non insulated
BLA121286BTO	300/300/200/150 Double branch take off - non insulated
BLA121288BTO	300/300/200/200 Double branch take off - non insulated
BLA12866BTO	300/200/150/150 Double branch take off - non insulated
BLA12886 BTO	300/200/200/150 Double branch take off - non insulated
BLA12888BTO	300/200/200/200 Double branch take off - non insulated
BLA14101010BTO	350/250/250/250 Double branch take off - non insulated
BLA14121010BTO	350/300/250/250 Double branch take off - non insulated
BLA14121212BTO	350/300/300/300 Double branch take off - non insulated
BLA141266BTO	350/300/150/150 Double branch take off - non insulated
BLA141286BTO	350/300/200/150 Double branch take off - non insulated
BLA141288BTO	350/300/200/200 Double branch take off - non insulated
BLA14141010BTO	350/350/250/250 Double branch take off - non insulated
BLA14141212BTO	350/350/300/300 Double branch take off - non insulated
BLA141466BTO	350/350/150/150 Double branch take off - non insulated
BLA141486BTO	350/350/200/150 Double branch take off - non insulated
BLA141488BTO	350/350/200/200 Double branch take off - non insulated

BLAUBERG DOUBLE BRANCH TAKE OFF - PLASTIC INSULATED

Product Code	Product Description
BLA8666BTOINS	200/150/150/150 Double branch take off - insulated
BLA8866BTOINS	200/200/150/150 Double branch take off - insulated
BLA101066BTOINS	250/250/150/150 Double branch take off - insulated
BLA101086BTOINS	250/250/200/150 Double branch take off - insulated
BLA101088BTOINS	250/250/200/200 Double branch take off - insulated
BLA10666BTOINS	250/150/150 Double branch take off - insulated
BLA10886BTOINS	250/200/200/150 Double branch take off - insulated
BLA10888BTOINS	250/200/200 Double branch take off - insulated
BLA12101010BTOINS	300/200/200 Double branch take off - insulated
BLA121066BTOINS	300/250/150/150 Double branch take off - insulated
BLA121086BTOINS	300/250/200/150 Double branch take off - insulated
BLA121088BTOINS	300/250/200/200 Double branch take off - insulated
BLA12121010BTOINS	300/300/250/250 Double branch take off - insulated
BLA121266BTOINS	300/300/150/150 Double branch take off - insulated
BLA121286BTOINS	300/300/200/150 Double branch take off - insulated
BLA121288BTOINS	300/300/200/200 Double branch take off - insulated
BLA12866BTOINS	300/200/150/150 Double branch take off - insulated
BLA12886BTOINS	300/200/200/150 Double branch take off - insulated
BLA12888BTOINS	300/200/200 Double branch take off - insulated
BLA14101010BTOINS	350/250/250 Double branch take off - insulated
BLA14121010BTOINS	350/300/250/250 Double branch take off - insulated
BLA14121212BTOINS	350/300/300 Double branch take off - insulated
BLA141266BTOINS	350/300/150/150 Double branch take off - insulated
BLA141286BTOINS	350/300/200/150 Double branch take off - insulated
BLA141288BTOINS	350/300/200/200 Double branch take off - insulated
BLA14141010BTOINS	350/350/250/250 Double branch take off - insulated
BLA14141212BTOINS	350/350/300/300 Double branch take off – insulated
BLA141466BTOINS	350/350/150/150 Double branch take off - insulated
BLA141486BTOINS	350/350/200/150 Double branch take off - insulated
BLA141488BTOINS	350/350/200/200 Double branch take off – insulated

BLAUBERG DUCT REDUCERS – PLASTIC NON INSULATED

Product Code	Product Description
BLA125100R	125/100 Reducer – non insulated
BLA150100R	150/100 Reducer – non insulated
BLA150125R	150/125 Reducer – non insulated
BLA200150R	200/150 Reducer – non insulated
BLA250200R	250/200 Reducer – non insulated
BLA300250R	300/250 Reducer – non insulated
BLA350300R	350/300 Reducer – non insulated

BLAUBERG MANUAL BALANCING DAMPERS

• Product Description

- Inline galvanised manual inline duct damper
- Features
 - Adjustment on the exterior of the damper for airflow

Product Code	Product Description
BLABDMA150	150 mm Manual Balancing Damper
BLABDMA200	200 mm Manual Balancing Damper
BLABDMA250	250 mm Manual Balancing Damper
BLABDMA350	300 mm Manual Balancing Damper
BLABDMA400	400 mm Manual Balancing Damper
BLABDMA450	450 mm Manual Balancing Damper

BLAUBERG BACKDRAFT DAMPERS

- Product Description
- Inline galvanised backdraft damper
- Features
 - For the prevention of air movement in the duct when a fan is not operating

Product Code	Product Description
BLABACKDRAFT100	100 mm Backdraft Damper – Metal
BLABACKDRAFT125	125 mm Backdraft Damper – Metal
BLABACKDRAFT150	150 mm Backdraft Damper – Metal
BLABACKDRAFT200	200 mm Backdraft Damper – Metal
BLABACKDRAFT250	250 mm Backdraft Damper – Metal
BLABACKDRAFT315	315 mm Backdraft Damper – Metal

Product Description

- Inline plastic backdraft damper
- Features
 - For the prevention of air movement in the duct when a fan is not operating. For use with 100 mm to 150 mm fans with low pressure curves (Pa).

Product Code	Product Description
BLABBACKDRAFT100	100 mm Backdraft Damper – Plastic
BLABBACKDRAFT125	100 mm Backdraft Damper – Plastic
BLABBACKDRAFT150	150 mm Backdraft Damper – Plastic

BLAUBERG JOINING COLLARS

• Product Description

• Inline plastic/metal duct joining collar for joining two lengths of ducting together

Product Code	Product Description
BLADUCTJOINER100	100 mm duct Joiner – Plastic
BLADUCTJOINER125	125 mm duct Joiner – Plastic
BLADUCTJOINER150	150 mm duct Joiner – Plastic
BLADUCTJOINER200	200 mm duct Joiner – Metal
BLADUCTJOINER250	250 mm duct Joiner – Metal
BLADUCTJOINER300	300 mm duct Joiner – Metal
BLADUCTJOINER350	350 mm duct Joiner – Metal
BLADUCTJOINER350	350 mm duct Joiner – Metal
BLADUCTJOINER400	400 mm duct Joiner - Metal
BLADUCTJOINER450	450 mm duct Joiner – Metal

Ducting

BLAUBERG 3 ZERO POLYESTER NUDE CORE DUCT

Product Code	Size
BLADUCT100-3	100 mm×6 m
BLADUCT125-3	125 mm×6 m
BLADUCT150-3	150 mm×6 m
BLADUCT200-3	200 mm×6 m
BLADUCT250-3	250 mm×6 m
BLADUCT300-3	300 mm×6 m
BLADUCT350-3	350 mm×6 m
BLADUCT400-3	400 mm×6 m
BLADUCT450-3	450 mm×6 m
BLADUCT500-3	500 mm×6 m

All ducting meets the requirements of Australian Standards 4254 and the building codes of Australia for domestic and commercial air handling systems

BLAUBERG 4 ZERO ALUMINIUM/POLYESTER NUDE CORE DUCT

Product Code	Size				
BLADUCT100-4	100 mm×6 m				
BLADUCT125-4	125 mm×6 m				
BLADUCT150-4	150 mm×6 m				
BLADUCT200-4	200 mm×6 m				
BLADUCT250-4	250 mm×6 m				
BLADUCT300-4	300 mm×6 m				
BLADUCT350-4	350 mm×6 m				
BLADUCT400-4	400 mm×6 m				
BLADUCT450-4	450 mm×6 m				
BLADUCT500-4	500 mm×6 m				
All dusting mosts the very inspects of Australian Standards (201) and the building sodes of Australia for demostic					

All ducting meets the requirements of Australian Standards 4254 and the building codes of Australia for domestic and commercial air handling systems

BLAUBERG 3 ZERO - R0.6 POLYESTER INSULATED DUCT

Product Code	Size
BLADUCT100-R0.6	100 mm×6 m
BLADUCT125-R0.6	125 mm×6 m
BLADUCT150-R0.6	150 mm×6 m
BLADUCT200-R0.6	200 mm×6 m
BLADUCT250-R0.6	250 mm×6 m
BLADUCT300-R0.6	300 mm×6 m
BLADUCT350-R0.6	350 mm×6 m
BLADUCT400-R0.6	400 mm×6 m
BLADUCT450-R0.6	450 mm×6 m
BLADUCT500-R0.6	500 mm×6 m

All ducting meets the requirements of Australian Standards 4254 and the building codes of Australia for domestic and commercial air handling systems

BLAUBERG 3 ZERO - R1.0 POLYESTER INSULATED DUCT

Product Code	Size
BLADUCT100-R1.0	100 mm×6 m
BLADUCT125-R1.0	125 mm×6 m
BLADUCT150-R1.0	150 mm×6 m
BLADUCT200-R1.0	200 mm×6 m
BLADUCT250-R1.0	250 mm×6 m
BLADUCT300-R1.0	300 mm×6 m
BLADUCT350-R1.0	350 mm×6 m
BLADUCT400-R1.0	400 mm×6 m
BLADUCT450-R1.0	450 mm×6 m
BLADUCT500-R1.0	500 mm×6 m

All ducting meets the requirements of Australian Standards 4254 and the building codes of Australia for domestic and commercial air handling systems

DUCTING

BLAUBERG 3 ZERO - R1.5 POLYESTER INSULATED DUCT

Product Code	Size
BLADUCT100-R1.5	100 mm×6 m
BLADUCT125-R1.5	125 mm×6 m
BLADUCT150-R1.5	150 mm×6 m
BLADUCT200-R1.5	200 mm×6 m
BLADUCT250-R1.5	250 mm×6 m
BLADUCT300-R1.5	300 mm×6 m
BLADUCT350-R1.5	350 mm×6 m
BLADUCT400-R1.5	400 mm×6 m
BLADUCT450-R1.5	450 mm×6 m
BLADUCT500-R1.5	500 mm×6 m

All ducting meets the requirements of Australian Standards 4254 and the building codes of Australia for domestic and commercial air handling systems

BLAUBERG – SEMI RIGID ALUMINIUM DUCT

Product Code	Size
BLADUCTAN100	100 mmx3 m
BEADOCIANIOO	
BLADUCTAN125	125 mm×3 m
BLADUCTAN150	150 mm×3 m
BLADUCTAN200	200 mm×3 m

All ducting meets the requirements of Australian Standards 4254 and the building codes of Australia for domestic and commercial air handling systems

BLAUBERG – FLEXIBLE AIR DUCT BLAUFLEX PVC

• Made of 65 micron thick white PVC film reinforced with steel wire frame • Temperature range, °C : -18 ... +70

Model	Ø d	l (Length)			
BlauFlex PVC/102/3	102 mm	3 m			
BlauFlex PVC/127/4	127 mm	4 m 5 m			
BlauFlex PVC/152/5	152 mm				
BlauFlex PVC/127/4 BlauFlex PVC/152/5	127 mm 152 mm	4 m 5 m			

Product Code	Size
BLABDCT1003PVC	100 mm×3 m PVC DUCT
BLABDCT1254PVC	125 mm×4 m PVC DUCT
BLABDCT1505PVC	150 mm×5 m PVC DUCT

All ducting meets the requirements of Australian Standards 4254 and the building codes of Australia for domestic and commercial air handling systems

Lorient LVH-0

Intumescent Round Fire Dampers

Use

• Cost effective round intumescent fire damper for walls, floors and ceilings

Features

- Cost effective solution
- Innovative & easy to install light weight design
- Suitable for extract and supply systems in commercial, industrial and residential projects
- No hazardous fibrous packing required
- No thermal clearances required in installation
- Reduced maintenance & resultant cost savings
- Also available as LVH-OSS (stainless steel construction) for aggressive environment
- Integrity Fire Rating up to 4 hours
- Galvanised sleeve (spigot) 360 mm long

Ordering Information

Product Code	Size
LVH44C-100R	100 mm
LVH44C-125R	125 mm
LVH44C-150R	150 mm
LVH44C-200R	200 mm
LVH44C-250R	250 mm
LVH44C-300R	300 mm
LVH44C-350R	350 mm

Accessories

FIRE RATED MASTIC

• Grey fire mastic seal to be used with all fire intumescent fire dampers

Product Code	Weight
LVHFRMG	310 g

Lorient LVH-44

Intumescent Square/Rectangular Fire Dampers

Use

• Square/rectangular intumescent fire damper for walls, floors and ceilings

Features

- Integrity Fire Rating up to 4 hours
- Damper Depth 44 mm
- Sizes available from 45 mm to over 10,000 mm
- Innovative, slimline design
- Simple installation
- Suitable for retrofit of seized mechanical dampers
- Approvals for wall, floor and ceiling mounting
- No thermal expansion clearances during installation
- Reduced maintenance and resultant cost saving

Ordering Information

Product Code	Size			
LVH44-100/100	100 mm×100 mm			
LVH44-100/125	100 mm×125 mm			
LVH44-125/125	125 mm×125 mm			
LVH44-125/150	125 mm×150 mm			
LVH44-150/150	150 mm×150 mm			
LVH44-150/175	150 mm×175 mm			
LVH44-175/175	175 mm×175 mm			
LVH44-175/200	175 mm×200 mm			
LVH44-200/200	200 mm×200 mm			
LVH44-200/250	200 mm×250 mm			
LVH44-250/250	250 mm×250 mm			
LVH44-250/300	250 mm×300 mm			
LVH44-300/300	300 mm×300 mm			
LVH44-300/350	300 mm×350 mm			
LVH44-350/350	350 mm×350 mm			
LVH44-350/400	350 mm×400 mm			
LVH44-400/400	400 mm×400 mm			
LVH44-400/450	400 mm×450 mm			
LVH44-450/450	450 mm×450 mm			
LVH44-450/500	450 mm×500 mm			
LVH44-500/500	500 mm×500 mm			
LVH44-500/550	500 mm×550 mm			
LVH44-550/550	550 mm×550 mm			
LVH44-550/600	550 mm×600 mm			
LVH44-600/600	600 mm×600 mm			
Customised sizes are available up to 10 m×10 m				

Accessories

FIRE RATED MASTIC

• Grey fire mastic seal to be used with all fire intumescent fire dampers

Product Code	Weight
LVHFRMG	310 g

Low Profile Ducting

Features

- Designed to provide quiet and efficient air extraction from bathrooms, toilets, dryers and rangehoods, where there are confined ceiling and wall spaces. This allows Mechanical Engineers and Architects a more flexible design where space for services becomes limited.
- Available in three sizes to suit a large range of airflow and low resistance requirements, at low noise levels to maximize fan performance.
- All low profile ducting sizes have been independently tested and complies with Australian Standards a 4254.2-2012: Ductwork for air-handling systems in buildings. 2.1.2 Rigid ductwork.
- Testing has been completed and is compliant to AS/NZS 1530.3 to have smoke development index no greater than 3 and a spread of flame index no greater than 0. All ducting has passed a UL181 burning test.

CHANNEL DUCT 2 M LENGTH

			Air Flow [L/s]							
F	Part No.	Dimensions	30	60	80	90	100	120	140	150
					P	ressure	Loss [P	a]		
E	BLA220CD2	220 mm×90 mm×2 m	0.68	2.6	4.4	5.6	6.8	9.6		15
E	BLA300CD2	300 mm×60 mm×2 m 0	0.75	2.86	4.48	6.15	7.47	10.55		16.48
E	BLA350CD2	350 mm×75 mm×2 m		1.20	2		2.60	4.10	5.80	
	160						_			
[L/s	140					-	-			
Flow	120						-			
Air	100						-			
	80						-			
	60						-			
	40			BLA2	20CD2		-			
	20			BLA3	50CD2		-			
	0			2 4		10	10			

Pressure Loss [Pa]

HORIZONTAL DUCT 90 DEGREE BEND

		Air Flow [L/s]								
Part No.	Dimensions	30	60	80	90	100	120	140	150	
				P	ressure	Loss [Pa	a]			
	220	0.47	10 50	10.16	06 70	22.74	40.74		60.70	
BLAZZUHBEND90	220 mm×90 mm	2.47	10.59	19.10	20.73	33.74	42.74		02.79	
BLA300HBEND90	300 mm×60 mm	2.71	11.64	21.05	29.37	37.08	46.97		69	
BLA350HBEND90	350 mm×75 mm		3.30	5.70		7.60	12.30	18.20		

HORIZONTAL DUCT 45 DEGREE BEND

					Air Flo	w [L/s]			
Part No.	Dimensions	30	60	80	90	100	120	140	150
				Р	ressure	Loss [Pa	a]		
BLA220HBEND45	220 mm×90 mm	0.77	3.16	5.41	7.38	9.68	12.11		17.79
BLA300HBEND45	300 mm×60 mm	0.85	3.47	5.95	8.11	10.64	13.13		19.55
BLA350HBEND45	350 mm×75 mm		1.20	1.90		2.50	3.90	5.30	
- 160						_			
s/1] 140	,		\sim	•		_			
MO 120				_		-			
4 ilo						-			
80				-		-			
60						-			
40			BLA22	OHBENI	045	-			
20			- BLASS	OHBENI	045	-			
0	. 10	15		20		25			
0 5	0 10	IJ	F	Pressure	Loss [Pa	20 a]			

VERTICAL DUCT 90 DEGREE BEND

				Air Flo	w [L/s]				
Part No.	Dimensions	30	60	80	90	100	120	140	150
				P	ressure	Loss [Pa	a]		
BLA220VBEND90	220 mm×90 mm	1.62	5.94	10.45	15.02	19.09	24		35.36
BLA300VBEND90	300 mm×60 mm	1.78	6.53	11.48	16.51	20.98	26.37		38.86
BLA350VBEND90	350 mm×75 mm		2.50	3.50		4.20	6.90	10.10	

VERTICAL DUCT 45 DEGREE BEND

		Air Flow [L/s]								
Part No.	Dimensions	30	60	80	90	100	120	140	150	
				F	ressure	Loss [Pa	a]			
BLA220VBEND45	220 mm×90 mm	1.19	4.46	7.84	11.25	14.28	17.97		26.49	
BLA300VBEND45	300 mm×60 mm	1.31	4.90	8.65	12.37	15.69	19.75		29.11	
BLA350VBEND45	350 mm×75 mm		1.50	2.40		3.10	4.80	6.90		

ROUND TO RECTANGULAR ADAPTOR 150 \varnothing

					Air Flo	w [L/s]			
Part No.	Dimensions	30	60	80	90	100	120	140	150
				Р	ressure	Loss [Pa	a]		
BLA220RREC150	220 mm×90 mm / 150 Ø	1.19	5.48	9.53	13.49	17	21.71		31.5
BLA300RREC150	300 mm×60 mm / 150 Ø	1.31	6.02	10.47	14.82	18.68	23.86		34.62
BLA350RREC150	350 mm×75 mm / 150 Ø		1.30	2.20		2.90	4.60	6.40	
Figure 100 140 120 100 80 60 40 20 0 5	10 15 20	25	- BLA2 BLA3 - BLA3 30	20RREC1 00RREC1 50RREC1 33 Pressure	50 50 50 5 1 Loss [Pa	40 a]			

ROUND TO RECTANGULAR ADAPTOR 200 \varnothing

					Air Flo	w [L/s]		
Part No.	Dimensions	30	60	80	90	100	120	140
				P	ressure	Loss [Pa	a]	
BLA300RREC200	300 mm×60 mm / 200 Ø	2.53	5.36	9.33	12.54	16.65	21.26	
BLA350RREC200	350 mm×75 mm / 200 Ø		7.30	12.70		22.66	28.94	31.99
Hit Flow [1/5]		5 3	BLA3 BLA3	000RREC2 50RREC2	000 00 40 Loss [Pa	45		

150

33.22

T PIECE DUCT

		Air Flow [L/s]							
Part No.	Dimensions	30	60	80	90	100	120	140	150
				F	ressure	Loss [Pa	1]		
BLA220TPIECE	220 mm×90 mm	1.4	5.2	8.8	11.2	13.5	19		30
BLA300TPIECE	300 mm×60 mm	1.54	5.72	9.68	12.32	14.85	20.9		33
BLA350TPIECE	350 mm×75 mm		2.4	4		5.2	8.2	11.5	

ADJUSTABLE RANGEHOOD ADAPTORS

Air Flow [L/s] Part No. Dimensions 30 60 80 90 100 120	140 150
Pressure Loss [Pa]	
BLA220ARANGEH150 220 mm×90 mm / 150 Ø 1.19 4.09 8.16 10.44 12.82 13.49	15.21
BLA300ARANGEH150 300 mm×60 mm / 150 Ø 1.31 4.49 8.97 11.47 14.09 14.82	16.71
BLA350ARANGEH150 350 mm×75 mm / 150 Ø 1.70 2.90 3.80 5.60	7.90
100	
<u>o</u> 120	
80	
60	
40 BLA220ARANGEH150	
20 BLA300ARANGEH150	
BLA3SUARANGEH ISU	
0 2 4 6 8 10 12 14 16 18	

ROUND TO ROUND ADAPTORS 200 \varnothing – 150 \varnothing

				s]						
Part No.	Dimensions	30	60	80	90	100	120	140	150	
				P	ressure	Loss [P	a]			
	350 mm×75 mm									
BLA220RTR200-150	300 mm×60 mm	0.34	0.84	1.74	2.29	2.88	3.89		6.64	
	220 mm×90 mm									
	350 mm×75 mm	0.37								
BLA300RTR200-150	300 mm×60 mm		0.37	0.37	0.92	1.91	2.52	3.16	4.27	
	220 mm×90 mm									
	350 mm×75 mm									
BLA350RTR200-150	300 mm×60 mm		1.80	3.80		5.50	8.50	15.40		
	220 mm×90 mm									
ر س 160										

ROUND TO ROUND ADAPTORS 150 \varnothing – 125 \varnothing

		Air Flow [L/s]								
Part No.	Dimensions	30	60	80	90	100	120	140	150	
				Р	ressure	Loss [Pa	a]			
	350 mm×75 mm									
BLA220RTR150-125	300 mm×60 mm	0.28	0.70	1.45	1.91	2.4	3.24		5.53	
	220 mm×90 mm									
	350 mm×75 mm									
BLA300RTR150-125	300 mm×60 mm	0.31	0.77	1.59	2.10	2.64	3.56		6.08	
	220 mm×90 mm									
	350 mm×75 mm									
BLA350RTR150-125	300 mm×60 mm		0.70	1.45		2.40	3.24	5.20		
	220 mm×90 mm									

90 DEGREE ELBOW 125 Ø

						Air Flo	w [L/s]			
1	Part No.	Dimensions	30	60	80	90	100	120	140	150
					P	ressure	Loss [Pa	a]		
I	BLA125RBEND90	220 mm×90 mm	1.54	6.62	11.98	16.71	21.09	26.71		39.24
I	BLA125RBEND90	300 mm×60 mm	1.69	7.27	13.16	18.36	23.18	29.35		43.12
	160									
-/s]	160									
N	140									
ЫG	120						-			
Air	100						-			
	80						-			
	60						-			
	40						_			
	20	B	LA125RBENI	090 for s	Size 220 >	(90 mm	_			
	0			J90 101 s	SIZE 300 7	00 11111				
	0 5	10 15 20	25 3	0 3	35	40	45			
	Pressure Loss [Pa]									

Swirl Diffusers

Fixed Blade Swirl Diffusers

Features

- Increasingly stringent requirements from the standpoint of technical features (higher supply flow rates and lower velocities in the occupant area) and aesthetics (smoother incorporation in the interior design) have generally made swirl diffusers a better choice for air diffusion.
- The recommended mounting height is around 2.5 to 4.0 m for all models. All these units can be used in VAV systems, allowing the flow rate to be reduced up to 25% of the nominal air flow rate without producing uncomfortable air currents in the facility.

Design

- Powder coated white as standard
- A high quality diffuser to generate airflow according to the principle of turbulent mixed airflow
- Low sound power level and pressure loss
- Installation for prefabricated ceiling or surface mounted for closed false ceilings
- No. of Blade 34
- Grilles are powder coated white as standard

Overall Dimensions and Mounting

Front Face

B – Distance between diffuser axes (in/m) X – Distance between diffuser axis and wall (in/m)

Supply Air Ceiling Grilles

Overall Dimensions

Nominal Neck Metric (×)	Face Size (A)
150×150 mm	295×295 mm
225×225 mm	3/0×3/0 mm
200, 200 mm	AAE warma
300×300 mm	445×445 11111
075 075	500 500
3/5×3/5 mm	520×520 mm
450×450 mm	595×595 mm

The first number is for horizontal dimension and the second number is for vertical dimension Grilles are powder coated white as standard

Quick Selection Table

Flow ra	te	Dim	150×150	225×225	300×300	375×375	450×450	525×525	600×600
(m³/h)	(l/s)	Aĸ	0.0109	0.0244	0.0435	0.0679	0.0978	0.1331	0.1739
		V_{κ}	2.5	1.1					
100	27.8	Х	0.5	0.3					
100	27.0	Pt	4.5	0.9					
		NR	18	-					
		Vκ	3.1	1,4					
120	22.2	Х	0.6	0.4					
120	55.5	Pt	6.5	1.3					
		NR	22	6					
		Vκ	3.6	1.6					
140	38.0	х	0.7	0.5					
140	30.9	Pt	8.9	1.8					
		NR	26	9					
		Vĸ	4.1	1.8	1.0				
100		Х	0.8	0.5	0.4				
160	44.4	Pt	11.6	2.3	0.7				
		NR	29	13	-				
		Vĸ	4,6	2,0	1.1				
		х	0,9	0,6	0.4				
180	50.0	Pt	14.7	2.9	0.9				
		NR	32	16	-				
		Vĸ	5.1	2.3	1.3				
		X	1.0	0.7	0.5				
200	55.6	Pt	18.2	3.6	1.1				
		NR	35	18	6				
		Vr	6.4	2.8	1.6	1.0			
		X	1.2	0,8	0,6	0.5			
250	69.4	P,	28.4	5.7	1.8	0.7			
		NR	40	24	12	-			
		Vr	7.6	3.4	19	12			
		X	1.5	1.0	0.7	0.6			
300	83.3	P.	40.9	8.2	2.6	11			
		NR	45	28	16	7			
		V _r	89	4.0	2.2	14	10		
		X	17	1.0	0.9	0.7	0.6		
350	97.2	P.	55.7	11.1	3.5	1.4	0.0		
		NR	49	32	20	11	-		
		V.	יד	4.6	2.6	1.6	11		
		X		1.0	1.0	0.8	0.7		
400	111.1	P.		14.5	4.6	1.9	0.9		
		NR		35	24	15	7		
		V _r		51	2.4	1.8	1 3		
		X		1.5	11	0.9	0.7		
450	125.0	P.		18.4	5.8	2.4	1 1`		
				38	27	17	10		
		V.		5.7	27	2.0	1.4		
		X		1.7	1.2	2.0	0.8		
500	138.9	D.		22.7	7.1	2.0	0.0		
				41	7.1	2.9	1.4		
		WK		41	29	20	13	1.0	
		VK		0.0	3.0	2.0	1./	1.3	
600	166.7	<u>^</u>		2.0	1.5	1.2	1.0	0.9	
		Pt		32.7	10.3	4.2	2.0	1.1	
		NR		45	34	25	17	11	

Flow ra (m³/h)	ite (l/s)	Dim A _K	150×150 0.0109	225×225 0.0244	300×300 0.0435	375×375 0.0679	450×450 0.0978	525×525 0.1331	600×600 0.1739
		Vκ		8.0	4.5	2.9	2.0	1.5	1.1
700	10/ /	Х		2.3	1.7	1.4	1.2	1.0	0.9
/00	194.4	Pt		44.5	14.0	5.7	2.8	1.5	0.9
		NR		49	37	28	21	15	9
		Vκ			5.1	3.3	2.3	1.7	1.3
800	222.2	х			2.0	1.6	1.3	1.1	1.0
000		Pt			18.3	7.5	3.6	2.0	1.1
		NR			41	32	24	18	12
		Vĸ			5.7	3.7	2.6	1.9	1.4
900	00 250.0	X			2.2	1.8	1.5	1.3	1.1
	Pt			23.1	9.5	4.6	2.5	1.4	
		NR			44	35	2/	21	15
		VK			6.4	4.1	2.8	2.1	1.0
1000	277.8	<u>×</u>			2.5	2.0	I./	1.4	1.2
					20.5	27	20	3.0	1.0
		NR.			40	37	2.4	25	10
		YK X			3.0	4.9 2.4	2.0	2.3	1.9
1200	1200 333.3	P.			41 1	16.9	8.1	4.4	2.6
	NR			51	42	34	28	2.0	
		Vĸ			•	5.7	4.0	2.9	2.2
		x				2.8	2.3	2.0	1.7
1400 388.9	388.9	Pt				23	11.1	6.0	3.5
		NR				46	38	32	26
		Vκ				6.5	4.5	3.3	2.6
1600		Х				3.2	2.7	2.3	2.0
1000	444.4	\mathbf{P}_{t}				30	14.5	7.8	4.6
		NR				49	41	35	30
		Vκ				7.4	5.1	3.8	2.9
1800	500.0	X				3.6	3.0	2.6	2.2
		Pt				38	18.3	9.9	5.8
		NR				52	44	38	33
		Vĸ					5.7	4.2	3.2
2000	555.6	<u>x</u>					3.3	2.9	2.5
							22.0	12.2	/.1
		NR.					4/	5.2	30
		YK X					/.1	3.6	4.0
2500	694.4	<u>л</u>					4.2	10 1	11.2
		NR					52	46	41
		Vĸ					02	6.3	4.8
		x						4.3	3.7
3000 833.3	Pt						27.4	16.1	
		NR						51	45
		Vκ						7.3	5.6
2500	072.2	Х						5	4.4
3300	912.2	\mathbf{P}_{t}						37.3	21.9
		NR						54	49
		Vκ						8.3	6.4
4000	1111.1	Х						5.7	5.0
		Pt						48.8	28.6
	NR						58	52	

 SYMBOLS:

 A_k - Effective area

 V_k - Effective velocity in m/s

 X - Throw in metres correspond to a terminal velocity in occupied zone of 0.25 m/s

 Pressure (P_t) - All pressures are in Pa (N/m²)

 NR - Noise level index in dB based on a room absorption and one diffuser

Round Ceiling Diffusers

Features

- The ceiling diffuser is a supply or return air diffuser made from an Engineering Polymer. It has a simple, visually appealing style that is suitable in commercial and domestic buildings. The central diffusion cone can be adjusted up or down by hand to control the air volume being supplied. For "shut off" the cone can be adjusted fully to stop the air supply completely.
- The radial supply air pattern creates a strong ceiling effect resulting in a draft-less environment. The strong ceiling effect allows it to be used in Variable Air Volume applications.

Design

- Non-glare mottle white finish
- Grilles are complete with snap down fixing clip and spring arrangement
- The airflow passage are smooth ensuring quiet and efficient airflow

Quick Selection Table

- Data is based on isothermal conditions with a room height of 2.7 m with the diffuser mounted flush in an unobstructed ceiling.
- Throws are given at a terminal velocity of 0.25 m/s. Data is tabulated with centre cone in two-test positions 20% and 100% open respectively. Noise Ratings are based on a room absorption level of 10 dB.

Neck Size (mm)				150				200							
Percentage Open	20% Open			100% Open				20% Open				100% Open			
Airflow (l/s)	Х	Pt	NR	Airflow (l/s)	х	Pt	NR	Airflow (l/s)	х	Pt	NR	Airflow (l/s)	Х	Pt	NR
15	1.0	9	<15	15	0.5	2	<15	25	1.3	6	<15	25	0.7	1	<15
30	1.3	38	16	30	1.0	8	16	50	1.6	25	<15	50	1.2	5	<15
45	1.7	85	17	45	1.3	18	18	75	2.0	56	21	75	1.6	12	<15
60	2.0	151	20	60	1.6	31	21	100	2.3	100	33	100	2.0	21	15
75	2.4	237	24	75	2.0	49	25	125	2.6	156	41	125	2.3	32	19
90	2.8	241	29	90	2.4	70	30	150	3.0	224	55	150	2.6	46	26

Neck Size (mm)				250				300							
Percentage Open	20% Open				Open	20% Open					100% Open				
Airflow (l/s)	х	Pt	NR	Airflow (l/s)	Х	Pt	NR	Airflow (l/s)	Х	Pt	NR	Airflow (l/s)	Х	Pt	NR
40	1.5	5	<15	40	0.8	1	<15	60	1.6	5	<15	60	0.7	1	<15
80	2.0	21	<15	80	1.5	4	<15	120	2.2	19	<15	120	1.6	4	<15
120	2.4	47	19	120	1.9	10	<15	180	2.8	43	16	180	2.3	9	<15
160	2.9	84	31	160	2.4	17	<15	240	3.3	76	26	240	2.7	16	<15
200	3.4	131	37	200	2.8	27	16	300	3.8	119	33	300	3.2	24	15
240	3.9	188	43	240	3.2	39	22	360	4.3	171	39	360	3.6	35	20

SYMBOLS:

X – Throw in metres correspond to a terminal velocity in occupied zone of 0.25 m/s

Pressure (P_t) – All pressures are in Pa (N/m²)

NR – Noise level index in dB based on a room absorption and one diffuser

DIFFUSERS AND GRILLES

Jetflo Diffusers

Features

- Suitable for heating, cooling and exhaust applications
- From A.B.S polymers providing long term strength and rigidity
- Complete with the twin spring clip arrangement found on the round
- ceiling diffusersFinished standard white
- Easily adjustable butterfly damper which can be adjusted from the face of the grille using a simple push-in dial

Overall Dimensions

Nominal Neck Metric (×)	Face Size (A)					
150 mm	205 mm					
200 mm	260 mm					
250 mm	305 mm					

Grilles are powder coated white as standard

Quick Selection Table

- Data is based on isothermal conditions with a room height of 2.7 m with the diffuser mounted flush in an unobstructed ceiling.
- Throws are given at a terminal velocity of 0.25 m/s. Data is tabulated with centre cone in two-test positions 20 % and 100 % open respectively. Noise Ratings are based on a room absorption level of 10 dB.

Neck Size (mm)				150				200							
Percentage Open	20% Open			100% Open				20% Open				100% Open			
Airflow (l/s)	Х	Pt	NR	Airflow (l/s)	Х	Pt	NR	Airflow (l/s)	Х	Pt	NR	Airflow (l/s)	Х	Pt	NR
16.5	1.0	9	<15	16.5	0.5	2	<15	27.5	1.3	6	<15	27.5	0.7	1	<15
33	1.3	38	16	33	1.0	8	16	55	1.6	25	<15	55	1.2	5	<15
49.5	1.7	85	17	49.5	1.3	18	18	82.5	2.0	56	21	82.5	1.6	12	<15
66	2.0	151	20	66	1.6	31	21	110	2.3	100	33	110	2.0	21	15
82.5	2.4	237	24	82.5	2.0	49	25	137.5	2.6	156	41	137.5	2.3	32	19
99	2.8	241	29	99	2.4	70	30	165	3.0	224	55	165	2.6	46	26

Neck Size (mm)				250				300							
Percentage Open	20% Open			100% Open				20% Open				100% Open			
Airflow (l/s)	Х	Pt	NR	Airflow (l/s)	Х	Pt	NR	Airflow (l/s)	Х	Pt	NR	Airflow (l/s)	Х	Pt	NR
44	1.5	5	<15	44	0.8	1	<15	66	1.6	5	<15	66	0.7	1	<15
88	2.0	21	<15	88	1.5	4	<15	132	2.2	19	<15	132	1.6	4	<15
132	2.4	47	19	132	1.9	10	<15	198	2.8	43	16	198	2.3	9	<15
176	2.9	84	31	176	2.4	17	<15	264	3.3	76	26	264	2.7	16	<15
220	3.4	131	37	220	2.8	27	16	330	3.8	119	33	330	3.2	24	15
264	3.9	188	43	264	3.2	39	22	396	4.3	171	39	396	3.6	35	20

SYMBOLS:

X~ – Throw in metres correspond to a terminal velocity in occupied zone of 0.25 m/s $Pressure~(P_i)$ – All pressures are in Pa (N/m^2)

NR – Noise level index in dB based on a room absorption and one diffuser

Linear Slot Diffusers

Overall Dimensions

No. of Slot	Nominal Neck Metric (X)	Face Size (A)					
1 Slot	45 mm	89 mm					
2 Slots	86 mm	130 mm					
3 Slots	126 mm	170 mm					
4 Slots	167 mm	211 mm					
5 Slots	207 mm	251 mm					
6 Slots	248 mm	292 mm					
Length dimension can be modified based on different specification. Grilles are powder coated white as standard							

Flow ra	te	Dim.	600-1	900-1	1200-1 600-2	1500-1	900-2 600-3	1200-2 600-4	900-3	1500-2	1200-3 900-4	1500-3	1200-4	1500-4
(m³/h)	(l/s)	Aκ	0.00672	0.01007	0.01343	0.01679	0.02015	0.02687	0.03022	0.03358	0.04030	0.05037	0.05373	0.06716
		Vκ	2.5	1.7	1.2	1.0								
60	16.7	X	1.3	1.1	0.9	0.8								
		Pt NR	1.3	0 <20	3	2 <20								
		Vĸ	3.3	2.2	21.7	1.3	1.1							
		X	1.7	1.4	1.2	1.1	1.0							
80	22.2	Pt	23	10	6	4	3							
		NR	34	26	20	<20	<20							
		Vκ	4.1	2.8	2.1	1.7	1.4	1.0						
100	27.8	Х	2.2	1.8	1.5	1.4	1.3	1.1						
		Pt	37	16	9	6	4	2						
		NR	39	31	26	22	<20	<20	1.0	1.0	1.0			
		V _K X	3.0	3.9	2.9	2.3	1.9	1.4	1.3	1.2	1.0			
140	38.9	Pt	72	32	18	11	8	4	4	3	2			
		NR	47	39	34	30	27	20	<20	<20	<20			
		Vκ		5.0	3.7	3.0	2.5	1.9	1.7	1.5	1.2	1.0		
190	50.0	Х		3.2	2.8	2.5	2.3	2.0	1.8	1.7	1.6	1.4		
100	50.0	Pt		53	30	19	13	7	6	5	3	2		
		NR		45	40	36	33	27	24	22	<20	<20		
		Vĸ		5.5	4.1	3.3	2.8	2.1	1.8	1.7	1.4	1.1	1.0	
200	55.6	X		3.5	3.1	2./	2.5	2.2	2.0	1.9	1.8	1.6	1.5	
				00	37	23	25	20	26	2/	20	3	2 <20	
		Vĸ		40	5.2	4.1	3.4	2.6	2.3	2.1	1.7	1.4	1.3	1.0
		X			3.8	3.4	3.1	2.7	2.6	2.4	2.2	2.0	1.9	1.7
250	69.4	Pt			57	37	25	14	11	9	6	4	4	2
		NR			48	44	41	34	32	29	25	21	<20	<20
		Vĸ			6.2	5.0	4.1	3.1	2.8	2.5	2.1	1.7	1.6	1.2
300	83.3	Х			4.6	4.1	3.8	3.3	3.1	2.9	2.7	2.4	2.3	2.1
		Pt			82	53	37	21	16	13	9	6	5	3
		NR			52	48	45	39	36	34	30	26	23	<20
		V _K				0.0 5.5	5.0	4.1	3.7	3.3	2.8	2.2	2.1	2.7
400	111.1	Pt				94	65	37	29	23	16	10	9	6
		NR				55	52	46	43	41	37	33	30	25
		Vκ						5.2	4.6	4.1	3.4	2.8	2.6	2.1
500	138.9	Х						5.4	5.1	4.8	4.4	4.0	3.8	3.4
500	150.7	Pt						57	45	37	25	16	14	9
		NR						51	49	46	42	38	36	31
		Vĸ							5.5	5.0	4.1	3.3	3.1	2.5
600	166.7	<u>л</u> Р.							65	53	3.3	4.7	21	4.1
		NR							53	51	47	43	40	35
		Vκ								5.8	4.8	3.9	3.6	2.9
700	10/. /.	Х								6.8	6.2	5.5	5.4	4.8
/00	194.4	Pt								72	50	32	28	18
		NR								54	50	46	44	39
		Vĸ									5.5	4.4	4.1	3.3
800	222.2	X									/.1	6.3	6.1	5.5
		Pt NR									00 54	42	37	23 42
		Vĸ										5.0	4.7	3.7
		X										7.1	6.9	6.2
900	250.0	Pt										53	46	30
		NR										52	50	45
		Vκ											5.2	4.1
1000	277.8	X											7.7	6.9
		Pt											57	37
		NR V.											53	48 5.0
		X												8.2
1200	333.3	Pt												53
		NR												52

SYMBOLS:

 A_{k} – Effective area V_{k} – Effective velocity in m/s X – Throw in metres correspond to a terminal velocity in occupied zone of 0.25 m/s **Pressure (P,)** – All pressures are in Pa (N/m²)

NR - Noise level index in dB based on a room absorption and one diffuser

Flow ra	ite	Dim.	600-1	900-1	1200-1	1500-1	900-2	1200-2	900-3	1500-2	1200-3	1500-3	1200-4	1500-4
(m3/h)	(1/c)	٨	0.00672	0.01007	600-2 0.01242	0.01670	600-3 0.02015	600-4	0 02022	0 02259	900-4	0.05027	0.05272	0.06716
(111-7-11)	(1/5)	AK	0.00072	0.01007	0.01343	0.010/9	0.02015	0.02087	0.03022	0.03336	0.04030	0.05057	0.05575	0.00710
		Vĸ	2.4	1.6	1.2	1.0								
60	16.7	X	1.1	0.9	0.7	0.7								
		Pt ND	13	0 	3	2 20								
		V _r	3.2	20	1.6	1.3	11							
		X	1.4	1.1	1.0	0.9	0.8							
80	22.2	Pt	22	10	6	4	2							
		NR	33	24	<20	<20	<20							
		Vκ	4.0	2.6	2.0	1.6	1.3	1.0						
100	27.9	Х	1.8	1.4	1.2	1.1	1.0	0.9						
100	27.0	Pt	35	16	9	6	4	2						
		NR	38	29	23	<20	<20	<20						
		Vĸ	5.5	3.7	2.8	2.2	1.8	1.4	1.2	1.1				
140	38.9	X	2.5	2.0	1.7	1.6	1.4	1.2	1.2	1.1				
			69	30	1/	26	8 	4	3	3				
		NK V	40	37	3.6	20	22	1.8	1.6	1 /	1 2	1.0		
		X		2.6	2.0	2.9	1.8	1.0	1.0	1.4	1.2	1.0		
180	50.0	Pt		50	28	18	1.0	7	6	5	3	2		
		NR		43	37	32	28	21	<20	<20	<20	<20		
		Vκ		5.3	4.0	3.2	2.6	2.0	1.8	1.4	1.3	1.1	1.0	
200	55.6	Х		2.9	2.5	2.2	2.0	1.8	1.7	1.4	1.4	1.3	1.2	
200	55.0	Pt		62	35	22	16	9	7	5	4	2	2	
		NR		46	40	34	30	24	21	<20	<20	<20	<20	
		Vĸ			5.0	4.0	3.3	2.5	2.2	2.0	1.7	1.3	1.2	
250	69.4	X			3.1	2.8	2.5	2.2	2.1	2.0	1.8	1.6	1.5	
					55	35	24	14	27	9	20	4	3	
		V			40 5 Q	40	4.0	29	26	24	20	1.6	1 5	1 2
		X			3.7	3.3	3.0	2.6	2.0	2.4	2.0	1.0	1.5	1.2
300	83.3	Pt			79	50	35	2.0	16	13	9	6	5	3
		NR			49	44	40	34	31	29	25	20	<20	<20
		Vκ				6.3	5.3	4.0	3.5	3.2	2.6	2.1	2.0	1.6
<i>4</i> 00	111 1	Х				4.4	4.0	3.5	3.3	3.1	2.9	2.6	2.5	2.2
400		Pt				90	62	35	28	22	16	10	9	6
		NR				51	47	41	38	36	32	27	25	20
		Vĸ						5.0	4.4	4.0	3.3	2.6	2.5	2.0
500	138.9	X						4.4	4.1	3.9	3.6	3.2	3.1	2.8
								22	43	30	24	10	21	9
		V.						40	44 5 3	41	4.0	32	30	20
		X							5.0	4.7	4.3	3.8	3.7	3.3
600	166.7	Pt							62	50	35	22	20	13
		NR							48	46	42	37	35	30
		Vκ								5.5	4.6	3.7	3.5	2.8
700	194.4	X								5.5	5.0	4.5	4.3	3.9
		Pt								69	48	30	27	17
		NR								50	45	40	39	34
		V _K									5.3	4.Z	4.0	3.2
800	222.2	<u>л</u>									5.7	3.1	35	4.4
		NR									49	40	44	37
		Vĸ									- 12	4.8	45	3.6
		X										5.8	5.0	5.0
900	250.0	Pt										50	6.2	28
		NR										47	55	40
		Vκ											48	4.0
1000	277.8	Х												5.5
		Pt												35
		NR												43
		V _K												4.8
1200	333.3	P.												50
		NR												47
														.,

SYMBOLS:

A_K - Effective area
 V_K - Effective velocity in m/s
 X - Throw in metres correspond to a terminal velocity in occupied zone of 0.25 m/s
 Pressure (P₁) - All pressures are in Pa (N/m²)
 NR - Noise level index in dB based on a room absorption and one diffuser

Linear Bar Grilles

Features

- All grilles, both with and without frames, can be manufactured with a hingeable access panel at one or both ends of the grille. The standard length of each panel piece is 150 mm, although this length can be varied upon request.
- Due to the large amount of possibilities offered by this type of grille, it is recommended to consult in specific vases with special dimensions.
- This range of grille has the necessary characteristics for its integration in contemporary architecture and interior design. They can be installed in ceilings, walls, consoles, fan-coils, induction units, both for supply and return air application and properly reinforced in floors.
- The maximum recommended length is 2 m in one piece, although 2 or more modules can be combined to give appearance of continuity.

General notes on the quick selection table

- Design
- Made of extruded aluminium
- Fixed blades at 0 degree, 15 degree, 30 degree
- Rigid, heavy gauge extruded frames with reinforced mitered and welded corners
- Standard finish white, other finishes are available
- Surface mounting or concealed mounting
- Size manufactured on request
- Construction is of a fixed core, while a hinged core option is available

• Apart from the before-mentioned factor Cs (for grilles mounted in sill or floor), another correction factor exists for the distance of the grille to the ceiling, when mounted in a wall. For a free jet this factor Ch will be 1.6.

- Corrected throw = Throw
- C_h, with h in the graph the distance between grille and ceiling.

 $X_c = \times \times C_h$

SYMBOLS:

- **A**_κ Effective area
- $\mathbf{V}_{\mathbf{K}}$ Effective velocity in m/s
- X Throw in metres correspond to a terminal velocity in occupied zone of 0.25 m/s
- **Pressure (P,)** All pressures are in Pa (N/m²)

NR – Noise level index in dB based on a room absorption and one diffuser

Elow rat	to	L	1000	1000	1000	1000	1000	1000	1000	1000
FLOWIA		Н	50	75	100	125	150	200	250	300
(m³/h)	(l/s)	Aκ	0.024	0.0370	0.0500	0.0630	0.0820	0.1080	0.1400	0.1720
		Vκ	1.2	0.8	0.6					
100	27.8	X	2.3	1.9	1.6					
			0.8	0.3	0.2					
		Vĸ	1.4	0.9	0.7					
120	22.2	X	2.8	2.2	1.9					
120	33.3	Pt	1.1	0.5	0.3					
		NR	-	-	-					
		V _K	1.6	1.1	0.8					
140	38.9	<u>л</u> Р.	3.2	2.0	0.4					
		NR	-	-	-					
		Vĸ	1.9	1.2	0.9					
160	44 4	Х	3.7	3.0	2.6					
100		Pt	2.0	0.8	0.5					
		NR	- 21	- 14	- 10	0.0				
		X	4.1	3.3	2.9	2.6				
180	50.0	P _t	2.5	1.1	0.6	0.4				
		NR	8	-	-	-				
		Vκ	2.3	1.5	1.1	0.9				
200	55.6	<u>X</u>	4.6	3.7	3.2	2.8				
			3.1	1.3	0.7	0.5				
		Vĸ	2.9	1.9	1.4	1.1	0.8			
250	<i>co (</i>	X	5.8	4.6	4.0	3.6	3.1			
250	69.4	Pt	4.9	2.0	1.1	0.7	0.4			
		NR	16	7	-	-	-			
		V _K	3.5	2.3	1.7	1.3	1.0	0.8	0.6	
300	83.3	<u>л</u> Р.	0.9 7 0	5.0 2.9	4.8	4.3	3.7	0.3	0.2	
		NR	21	11	-	-	-	-	-	
		Vκ	4.1	2.6	1.9	1.5	1.2	0.9	0.7	0.6
350	97.2	х	8.1	6.5	5.6	5.0	4.4	3.8	3.3	3.0
550	<i>31.</i> 2	Pt	9.5	4.0	2.2	1.4	0.8	0.5	0.3	0.2
		NR	25	15	9	- 10	- 1/	- 1.0	-	-
		X	4.0	5.0 7.4	6.4	5.7	5.0	4.3	3.8	3.4
400	111.1	P _t	12.4	5.2	2.9	1.8	1.1	0.6	0.4	0.2
		NR	28	19	12	8	-	-	-	-
		Vĸ	5.2	3.4	2.5	2.0	1.5	1.2	0.9	0.7
450	125.0	X	10.4	8.3	7.2	6.4	5.6	4.9	4.3	3.9
			31	0.0	3.0	2.3	1.3	- 0.8	0.5	- 0.3
		Vĸ	5.8	3.8	2.8	2.2	1.7	1.3	1.0	0.8
500	120.0	X	11.5	9.3	8.0	7.1	6.2	5.4	4.8	4.3
500	130.9	Pt	19.4	8.2	4.5	2.8	1.7	1.0	0.6	0.4
		NR	34	25	18	13	8	-	-	-
		V _K	0.9	4.5	3.3	2.0	2.0	1.5	5.7	1.0
600	166.7	P.	28.0	11.8	6.4	4.1	2.4	1.4	0.8	0.5
		NR	38	29	23	18	12	6	-	-
		Vĸ	8.1	5.3	3.9	3.1	2.4	1.8	1.4	1.1
700	194.4	X	16.1	13.0	11.2	9.9	8.7	7.6	6.7	6.0
			38.1	16.0	8.8 27	5.5	3.3	1.9	1.1	0.7
		V _r	9.3	6.0	4 4	3.5	27	21	16	1.3
	222.2	X	18.4	14.8	12.8	11.4	10.0	8.7	7.6	6.9
800	222.2	Pt	49.7	20.9	11.5	7.2	4.3	2.5	1.5	1.0
		NR	46	37	30	25	20	14	8	-
		V _K		6.8 16.7	5.0	4.0	3.0	2.3	1.8	1.5
900	250.0	 P.		26.5	14.4	9.1	5.4	9.0	0.0	1.7
		NR		40	33	28	23	17	11	7
		Vĸ		7.5	5.6	4.4	3.4	2.6	2.0	1.6
1000	277.8	X		18.5	15.9	14.2	12.5	10.9	9.5	8.6
	_//.0	Pt		32.7	17.9	11.3	6.7	3.8	2.3	1.5
		NR		42	36	31	25	20	14	10
		X			0.7	5.3 17 1	4.1	3.1	2.4 11 4	1.9
1200	333.3	Pt			25.8	16.2	9.6	5.5	3.3	2.2
		NR			41	36	30	24	19	14
		Vκ				6.2	4.7	3.6	2.8	2.3
1400	388.9	X				19.9	17.4	15.2	13.3	12.0
		Pt				22.1	13.0	7.5	4.5	3.0
		INK				40	.34	/8	/3	18

Double Deflection Grilles

Features

- For supply air, having a single set of fully adjustable blades to give directional control of the air pattern in four directions if required. Suitable for wall or duct mounting. Also available with curved face for circular duct installations.
- From extruded aluminium sections, ensuring functional strength and performance that also gives an attractive and aesthetically pleasing appearance. Incorporating two sets of individually adjustable blades, the blades may be set either horizontally or at angles, either up or down. Rear blades are adjusted in a similar way but only in a vertical plane. Powder coated white as standard with optional colors and finishes available on request.

Design

- Aluminium grilles, adjustable blades
- Powder coated white as standard
- H,L: Nominal ordering sizes (duct opening size)
- Designation: Vertical front blades & Horizontal front blade
- Accessories: Sub frame SFR, Volume control damper, OBD, CLIP mounting clips for sub frame
- Size manufactured on request
- Blades are movable on horizontal and vertical lines.

blaubergventilation.com.au

General notes on the quick selection table

Some correction factors exist as a function of the ratio between room width and length, the blade deflection angle and the distance from grille to ceiling, and are defined in the following manner:

- A/L: Ratio between the width and the length of the room to be conditioned. For example, for a room with a width of 4.5 m and length of 4.5 m the factor A/L equals 1 (see fig 1).
- C_a: Factor obtained from the graph. For example, if the value of A/L = 1 and for a grille with 0° blade angle, the value of Ca equals 1.3 (see fig 2).
- C_h : Correction factor for height, obtained from the distance between grille and ceiling.
- For a free jet **C**_b is always 1.1.
- For example, if the grille is located at 0.2 m from the ceiling the factor C_h equals 1 (see fig 3&4).
- \bullet Once calculated, the correction factor for the throw (\mathbf{K}_{c}) can be determined by the following formula:

$$K_{c} = C_{a} \times C_{h}$$

 $K_{c} = 1.3 \times 1$

• In this case of selection by table, we would obtain the correction throw (X_c):

Quick Selection Table

- SYMBOLS:
- **Α**_κ Effective area
- $\mathbf{V}_{\mathbf{K}}^{\mathbf{K}}$ Effective velocity in m/s
- $\tilde{\textbf{X}}$ Throw in metres correspond to a terminal velocity in occupied zone of 0.25 m/s

Pressure (P_t**)** – All pressures are in Pa (N/m²)

NR – Noise level index in dB based on a room absorption and one diffuser

Flow ra	te	Dim	200×100	250×100	300×100 200×150	250×150	300×150	350×150 250×20	0 600×10 400×11 300×20	00 50 00	500×1 350×2	150 200	600×1 450×2 350×2 300×3	50 00 50 00	600× 500× 400×	200 250 300	1000 750× 600× 500×	×150 ×200 ×250 ×300	1200× 900× 750× 600×	×150 200 250 300	1100 900× 750×	<200 250 300	1200» 1000»	<250 <300
(m³/h)	(1/s)	A _κ	0.00098 0° 30°	0.00125 0° 30°	0.0148 0° 30°	0.0183 0° 30°	0.0224 0° 30°	0.0262 0° 30	0.030 0° 0° 3	9 10°	0.038 0°	81 30°	0.047	74 30°	0.06 0°	560 30°	0.0 0°	801 30°	0.09 0°	970 30°	0.12 0°	210 30°	0.16 0°	70 30°
(111 / 11)	((73)	V _r	28 28	22 22	19 19	15 15	12 12	11 1	1 0 9 0	19	07	07	0.6	0.6	U	50	U	50	U	50	U	50	U	50
100	27.8	X	2.2 1.8	1.9 1.6	1.8 1.4	1.6 1.3	1.5 1.2	1.3 1.	1 1.2	1	1.1	0.9	1	0.8										
		Pt NR	3.2 3.9 10 12	2 2.4	1.4 1.7	0.9 1.1	0.6 0.7	0.4 0.	5 0.3 ().4 -	0.2 -	0.3 -	0.1	0.2										
		Vĸ	4.3 4.3	3.3 3.3	2.8 2.8	2.3 2.3	1.9 1.9	1.6 1.	6 1.3 1	1.3	1.1	1.1	0.9	0.9	0.6	0.6								
150	41.7	X Pt	3.3 2.6 7.2 8.7	<u>2.9</u> <u>2.3</u> 4.4 <u>5.3</u>	3.2 3.8	2.4 1.9	<u>2.2</u> 1.7 1.4 1.7	<u> </u>	6 1.9 2 0.7 (1.5).9	0.5	0.6	0.3	1.2 0.4	0.2	0.2								
		NR	20 22	15 17	12 14	8 10	4 6		-	-	-	-	-	-	-	-	0.7	0.7						
200	EE 6	X	4.4 3.5	4.4 4.4 3.9 3.1	3.8 3.8	3.2 2.6	2.5 2.5	2.1 2.	2 2.5	2	2.2	1.5	2	1.2	1.7	1.4	1.5	1.2						
200	55.0	P _t	12.9 15.4	7.9 9.5	5.6 6.8	3.7 4.4	2.5 3	1.8 2.	2 1.3 1	1.6	0.9	1	0.5	0.7	0.3	0.3	0.2	0.2						
		Vĸ	7.1 7.1	5.6 5.6	4.7 4.7	3.8 3.8	3.1 3.1	2.7 2.	0 5 7 2.2 2	2.2	- 1.8	- 1.8	- 1.5	- 1.5	- 1.1	- 1.1	0.9	0.9						
250	69.4	X D.	5.5 4.4	4.9 3.9	4.5 3.6	4 3.2	3.6 2.9	5.3 2.	7 3.1 2	2.5	2.8	2.2	2.5	2	2.1	1.7	1.9	1.5						
		NR	33 35	28 30	24 26	20 22	16 18	13 1	5 10	12	6	8	-	-	-	-	-	-						
		V _K	8.5 8.5	6.7 6.7	5.6 5.6	4.6 4.6	3.7 3.7	3.2 3.	2 2.7 2	2.7	2.2	2.2	1.8	1.8	1.3	1.3	1	1	0.9	0.9				
300	83.3	Pt	28.9 34.7	17.8 21.3	12.7 15.2	8.3 10	5.5 6.6	4 4.	9 2.9 3	3.5	1.9	2.3	1.2	1.5	0.6	0.8	0.4	0.5	0.3	0.4				
		NR Vr	37 39	32 34	29 31	25 27 53 53	21 23	18 2	0 15 7 31 3	17 3 1	10	12	6 21	8	-	-	- 12	- 12	-	-				
350	97.2	X	7.7 6.2	6.8 5.5	6.3 5	5.6 4.5	5.1 4.1	4.7 3.	8 4.3 3	3.5	3.9	3.1	3.5	2.8	3	2.4	2.7	2.2	2.4	2				
			39.4 47.2 41 43	24.2 29	17.3 20.7 33 35	11.3 13.5 29 31	7.5 9	5.5 6. 21 2	6 4 4 3 18 3	4.8 20	2.6	3.1 16	1.7	2	0.9	1	0.6	0.7	0.4	0.5				
		Vĸ	11.3 11.3	8.9 8.9	7.5 7.5	6.1 6.1	5 5	4.2 4.	2 3.6 3	3.6	2.9	2.9	2.3	2.3	1.7	1.7	1.4	1.4	1.1	1.1	0.9	0.9		
400	111.1	X Pt	8.8 7 51.4 61.7	7.8 6.2	7.2 5.7	6.4 5.1 14.7 7.7	5.8 4.7 9.8 11.8	5.4 4. 7.2 8.	35 65.26	4 5.2	4.5	3.6 4.1	4	3.2 2.6	3.4	2.7	3.1 0.8	2.5	2.8	2.2	2.5	2		
		NR	44 46	39 41	36 38	32 34	28 30	25 2	7 22	24	17	19	13	15	7	9	-	-	-	-	-	-		
		V _K X		10 10 8.8 7	8.4 8.4	6.8 6.8 7.2 5.8	5.6 5.6 6.5 5.2	4.8 4. 6.1 4.	8 4 8 5.6 4	4 4.5	3.3 5	3.3 4	2.6 4.5	2.6 3.6	1.9 3.8	1.9 3.1	1.6 3.5	1.6	1.3 3.1	1.3	1 2.8	1 2.3		
450	125.0	Pt		40 48	28.5 34.2	18.7 22.4	12.5 14.9	9.1 10	.9 6.5 7	7.9	4.3	5.2	2.8	3.3	1.4	1.7	1	1.2	0.7	0.8	0.4	0.5		
		NR Vĸ		42 44	<u>39 41</u> 9.4 9.4	35 37 7.6 7.6	<u>31 33</u> 6.2 6.2	28 3 5.3 5.	024 34.54	26 4.5	20 3.6	22 3.6	16 2.9	18 2.9	10 2.1	12 2.1	6 1.7	8	- 1.4	-	- 1.1	- 1.1	0.8	0.8
500	138.9	X		9.7 7.8	8.9 7.2	8 6.4	7.3 5.8	6.7 5.	4 6.2	5	5.6	4.5	5	4	4.2	3.4	3.8	3.1	3.5	2.8	3.1	2.5	2.7	2.10
				49.4 59.3	35.2 42.3 41 43	23 27.6 37 39	<u>15.4 18.5</u> 33 35	11.2 13 30 3	.58.19 227	9.7 29	5.3 23	6.4 25	3.4 19	4.1 21	1.8	2.1	1.2	1.4	0.8	1 7	0.5	0.6	- 0.3	- 0.3
		Vĸ			10.3 10.3	8.3 8.3	6.8 6.8	5.8 5.	8 4.9 4	4.9	4	4	3.2	3.2	2.3	2.3	1.9	1.9	1.6	1.6	1.3	1.3	0.9	0.9
550	152.8	X Pt			9.8 7.9 42.6 51.1	8.9 7.1 27.9 33.5	8 6.4 18.6 22.3	7.4 5. 13.6 16	9 6.8 3 .3 9.8 1	5.4 1.7	6.1 6.4	4.9 7.7	5.5 4.2	4.4 5	4./	3.7	4.2	3.4	3.8	3.1	3.4 0.6	2.8	2.9 0.3	2.3
		NR			44 46	39 41	36 38	32 34	4 29	31	25	27	21	23	14	16	11	13	7	9	-	-	-	-
c	1007	ν _κ Χ			10.7 8.6	9.1 9.1 9.1 9.7 9.7	8.4 /.4 8.7 7	6.4 6. 8.1 6.	4 5.4 5 5 7.4 5	5.4 5.9	4.4 6.7	4.4 5.4	3.5 6	3.5 4.8	2.5	2.5 4.1	2.1 4.6	3.7	4.2	1./ 3.4	1.4 3.8	1.4	3.2	1
600	166.7	Pt			50.7 60.9	33.2 39.8	22.1 26.6	16.2 19	.4 11.6	14	7.7	9.2	4.9	5.9	2.6	3.1	1.7	2.1	1.2	1.4	0.8	0.9	0.4	0.5
		Vĸ			40 48 12.2 12.2	9.9 9.9	<u>38 40</u> 8.1 8.1	35 3 6.9 6.	7 31 . 9 5.8 5	33 5.8	4.7	29 4.7	3.8	25 3.8	2.7	2.7	2.3	2.3	2.9	1.9	5 1.5	1.5	- 1.1	- 1.1
650	180.6	X			11.6 9.3	10.5 8.4	9.5 7.6	8.7 7	86	5.4	7.2	5.8	6.5	5.2	5.5	4.4	5	4	4.5	3.6	4.1	3.3	3.5	2.8
		NR			48 50	44 46	40 42	37 3	.8 13.7 1 9 33 3	0.4 35	29	31	25	27	3 18	20	15	2.4	1.4	1.7	0.9 7	9	-	-
		Vĸ				10.6 10.6	8.7 8.7	7.4 7.	4 6.3 6	5.3	5.1	5.1	4.1	4.1	2.9	2.9	2.4	2.4	2	2	1.6	1.6	1.2	1.2
700	194.4	Pt				45.2 54.2	30.1 36.2	9.4 7. 22 26	.4 15.8	5.9 19	10.4 1	0.z 12.5	6.7	8.1	3.5	4.7	2.4	4.3 2.8	1.6	3.9 1.9	4.4	1.2	0.5	0.7
		NR				45 47	41 43	38 4	0 35	37	31	33	27	29	20	22	17	19	13	15	8	10	-	-
750	208.3	V _K X				12.1 9.7	9.3 9.3	10.1 8.	1 9.3 7	5.7 7.4	5.5 8.4	6.7	4.4 7.5	4.4 6	5.2 6.4	5.2 5.1	5.8	4.6	5.2	4.2	4.7	3.8	4	3.2
750	200.5					51.8 62.2	34.6 41.5	25.3 30	.3 18.2 2	1.8	12 1	14.4	7.7	9.3	4	4.8	2.7	3.2	1.8	2.2	1.2	1.4	0.6	0.7
		Vĸ				12.1 12.1	9.9 9.9	8.5 8.	5 7.2 7	39 7.2	5.8	5.8	4.7	30 4.7	3.4	3.4	2.8	2.8	2.3	2.3	1.8	1.8	1.3	1.3
800	222.2	<u>Х</u> Р.				12.9 10.3	11.6 9.3	10.8 8.	6 9.9 7 5 20 7 2	7.9 48	8.9	7.1	8	6.4	6.8	5.4	6.2	4.9	5.6 2.1	4.5	5	4	4.3	3.4
		NR				49 51	45 47	42 4	4 38 4	40	34	36	30	32	24	26	20	22	16	18	12	14	-	-
		V _K X					10.5 10.5 12.4 9.9	99) 7.6 7 1 10.5 8	7.6	6.2 9.5	6.2 76	5 8.5	5	3.6	3.6 5.8	2.9	2.9	2.4	2.4	2	2	1.4	1.4
850	236.1	Pt					44.4 53.3	32.5 3	9 23.4	28	15.4 1	18.4	9.9 1	1.9	5.1	6.1	3.5	4.2	2.4	2.8	1.5	1.8	0.8	1
		NR Vr					46 48	43 4	540 5818	42 3 1	36 6.6	38 6.6	31 5.3	33 5.3	25 3.8	27	21	23	17	19 2.6	13	15 21	7	9 15
900	250.0	X					13.1 10.5	12.1 9.	7 11.1 8	3.9	10	8	9	7.2	7.6	6.1	6.9	5.5	6.3	5	5.6	4.5	4.8	3.8
	20010						49.8 59.8 48 50	36.4 43	.7 26.2 3 6 41 4	1.4 43	17.2 2 37	20.7 39	11.1 1 33	3.4	5.7 26	6.9 28	3.9 23	4.7	2.7	3.2 21	1.7 15	2	0.9 8	1.1
		Vĸ					11.8 11.8	10.1 10	.1 8.5 8	3.5	6.9	6.9	5.6	5.6	4	4	3.3	3.3	2.7	2.7	2.2	2.2	1.6	1.6
950	263.9	X Pt					13.8 11.1 55.5 66.6	12.8 10	.2 11.8 9	9.4 35	10.6 19.2	8.5 23	9.5 12.4 1	7.6	8 6.4	6.4 7.7	7.3	5.8 5.2	6.6 3	5.3	5.9	4.8	5.1 1	4
		NR					49 51	46 4	8 43	45	38	40	34	36	28	30	24	26	20	22	16	18	10	12
1000	077.0	X X						10.6 10	.o 9 .8 12.4 9	9 9.9	7.3	7.3 8.9	5.9	5.9 8	4.2 8.5	4.2 6.8	3.5	3.5 6.2	2.9	2.9	2.3 6.3	2.3	5.3	4.3
1000	2/7.8	Pt						45 54	4 32.3 3	8.8	21.3 2	25.5	13.7 1	6.5	7.1	8.5	4.8	5.8	3.3	3.9	2.1	2.5	1.1	1.3
		NR V _K						4/ 4	9 44 4 .7 9.9 9	40 9.9	40 8	42 8	35 6.4	37 6.4	29 4.6	31 4.6	25 3.8	3.8	3.2	3.2	2.5	2.5	1.8	1.8
1100	305.6	X						14.8 11	.8 13.6 1	0.9	12.3	9.8	11	8.8	9.3	7.5	8.5	6.8	7.7	6.2	6.9	5.5	5.9	4.7
		Pt NR						54.4 65 49 5	.3 39.1 4 1 46 4	o.9 48	25.7 3 42	30.9 44	10.6 1 38	40	8.6 31	33	5.8 28	30	4 24	4.8	2.6 19	3.1 21	1.3	1.6

DIFFUSERS AND GRILLES

Flow ra	ite	Dim	200×100	250×100	300×100 200×150	250×150	300×150	350×150 250×200	600×100 400×150 300×200	500×150 350×200	600×150 450×200 350×250 300×300	600×200 500×250 400×300	1000×150 750×200 600×250 500×300	1200×150 900×200 750×250 600×300	1100×200 900×250 750×300	1200×250 1000×300
(m³/h)	(l/s)	Α _κ α	0.00098 0° 30°	0.00125 0° 30°	0.0148 0° 30°	0.0183 0° 30°	0.0224 0° 30°	0.0262 0° 30°	0.0309 0° 30°	0.0381 0° 30°	0.04/4 0° 30°	0.0660 0° 30°	0.0801 0° 30°	0.0970 0° 30°	0.1210 0° 30°	0.1670 0° 30°
1200	333.3	V _κ X P _t NR							10.8 10.8 14.9 11.9 46.5 55.9 48 50	8.7 8.7 13.4 10.7 30.6 36.7 44 46	7 7 12 9.6 19.8 23.7 40 42	5.1 5.1 10.2 8.1 10.2 12.2 33 35	4.2 4.2 9.2 7.4 6.9 8.3 30 32	3.4 3.4 8.4 6.7 4.7 4.7 26 28	2.8 2.8 7.5 6 3 3.6 22 24	2 2 6.4 5.1 1.6 1.9 15 17
1300	361.1	ν _κ Χ Ρ _t NR							11.7 11.7 16.1 12.9 54.6 65.6 50 52	9.5 9.5 14.5 11.6 35.9 43.1 46 48	7.6 13 10.4 23.2 27.9 42 44	5.5 5.5 11 8.8 12 14.4 35 37	4.5 4.5 10 8 8.1 9.8 32 34	3.7 3.7 9.1 7.3 5.5 6.7 28 30	3 3 8.1 6.5 3.6 4.3 24 26	2.2 2.2 6.9 5.5 1.9 2.2 17 19
1400	388.9	V _κ X P _t NR							12.6 12.6 17.3 13.9 63.4 76 52 54	10.2 10.2 15.6 12.5 41.7 50 48 50	8.2 8.2 14 11.2 26.9 32.2 44 46	5.9 5.9 11.9 9.5 13.9 16.7 37 39	4.94.910.88.69.411.33335	4 4 9.8 7.8 6.4 7.7 30 32	3.2 3.2 8.8 7 4.1 5 25 27	2.3 2.3 7.5 6 2.2 2.6 19 21
1500	416.7	V _κ X P _t								10.9 10.9 16.7 13.4 47.8 57.4 50 52	8.8 8.8 15 12 30.9 37.1 45 47	6.3 6.3 12.7 10.2 15.9 19.1 39 41	5.2 5.2 11.5 9.2 10.8 13 35 37	4.3 4.3 10.5 8.4 7.4 8.9 31 33	3.4 3.4 9.4 7.5 4.7 5.7 27 29	2.52.586.42.532123
1600	444.4	V _K X Pt NR								11.7 11.7 17.8 14.3 54.4 65.3 51 53	9.4 9.4 16 12.8 35.2 42.2 47 49	6.7 6.7 13.6 10.8 18.1 21.8 40 42	5.5 5.5 12.3 9.8 12.3 14.8 37 39	4.6 4.6 11.2 8.9 8.4 10.1 33 35	1.7 2.7 3.7 3.7 10 8 5.4 6.5 29 31	2.7 2.7 8.5 6.8 2.8 3.4 22 24
1700	472.2	Vκ X Pt NR									10101713.639.757.64850	7.27.214.411.520.524.64244	5.95.913.110.513.916.73840	4.94.911.99.59.511.43436	3.9 3.9 10.6 8.5 6.1 7.3 30 32	2.82.89.17.23.23.82426
1800	500.0	V _κ X P _t NR									10.510.51814.444.553.45052	7.6 7.6 15.3 12.2 23 27.5 43 45	6.26.213.811.115.618.73941	5.2 5.2 12.6 10.1 10.6 12.8 36 38	4.14.111.396.88.23133	3 3 9.6 7.7 3.6 4.3 25 27
1900	527.8	Vκ X Pt NR									11.1 11.1 19 15.2 49.6 59.5 51 53	8 8 16.1 12.9 25.6 30.7 45 47	6.6 6.6 14.6 11.7 17.4 20.8 41 43	5.4 5.4 13.3 10.6 11.8 14.2 37 39	4.4 4.4 11.9 9.5 7.6 9.1 33 35	3.2 3.2 10.1 8.1 4 4.8 26 28
2000	555.6	Vκ X Pt NR									11.7 11.7 20 16 54.9 65.9 52 54	8.4 8.4 16.9 13.6 28.3 34 46 48	6.9 6.9 15.4 12.3 19.2 23.1 42 44	5.7 5.7 14 11.2 13.1 15.7 38 40	4.6 4.6 12.5 10 8.4 10.1 34 36	3.3 3.3 10.7 8.5 4.4 5.3 28 30
2100	583.3	V _κ X P _t										8.8 8.8 17.8 14.2 31.2 37.5 47 49	7.3 7.3 16.2 12.9 21.2 25.5 43 45	6 6 14.7 11.7 14.5 17.4 39 41	4.8 4.8 13.1 10.5 9.3 11.2 35 37	3.53.511.28.94.95.92931
2200	611.1											9.3 9.3 18.6 14.9 34.3 41.2 48 50	7.6 7.6 16.9 13.5 23.3 27.9	6.3 6.3 15.4 12.3 15.9 19.1 41 43	5.1 5.1 13.8 11 10.2 12.2 36 38	3.7 3.7 11.7 9.4 5.4 6.4 30 32
2400	666.7	Vк Х Рt NR										10.1 10.1 20.3 16.3 40.8 49 50 52	8.3 8.3 18.5 14.8 27.7 33.3 46 48	6.9 6.9 16.8 13.4 18.9 22.7 43 45	5.5 5.5 15 12 12.1 14.6 38 40	4 4 12.8 10.2 6.4 7.6 32 34
2600	722.2	ν _κ Χ Ρ _t NR										10.910.92217.647.957.55254	9 9 20 16 32.5 39 48 50	7.4 7.4 18.2 14.5 22.2 26.6 45 47	6 6 16.3 13 14.3 17.1 40 42	4.34.313.811.17.593436
2800	777.8	Vκ X Pt NR											9.7 9.7 21.5 17.2 37.7 45.3 50 52	8 8 19.6 15.7 25.7 30.9 46 48	6.46.417.51416.519.84244	4.74.714.911.98.710.43638
3000	833.3	Vκ X Pt NR											10.410.423.118.543.3525254	8.6 8.6 21 16.8 29.5 35.4 48 50	6.96.918.8151922.84446	5 5 16 12.8 10 12 38 40
3200	888.9	Vκ X Pt NR												9.2 9.2 22.4 17.9 33.6 40.3 50 52	7.3 7.3 20 16 21.6 25.9 45 47	5.35.31713.611.313.63941
3500	972.2	V _κ X P _t NR												10 10 24.5 19.6 40.2 48.2 52 54	8 8 21.9 17.5 25.8 31 48 50	5.8 5.8 18.6 14.9 13.6 16.3 41 43
3800	1056.6													10.9 10.9 26.6 21.2 47.4 56.8 54 56	8.7 8.7 23.8 19 30.4 36.5 50 52	6.3 6.3 20.2 16.2 16 19.2 43 45
4100	1138.9													01 00	9.4 9.4 25.7 20.5 35.4 42.5	43 6.8 21.8 17.5 18.6 22.3
4500	1250.0														10.3 10.3 28.2 22.5 42.7 51.2 54 56	43 47 7.5 7.5 24 19.2 22.4 26.9 47 49

Hinged Eggcrate Grilles with Removable Filter

Features

- Ideal for exhaust and return air applications.
- The Eggcrate Grille is the most popular and economical for exhaust and return air applications.
- The Loose Core Eggcrate grille allows the installer to simply push the core up and easily fix the frame into position and drop the core back into the outer frame.
- Also available with 35 degree Eggcrate Core.

Design

- o Capable of transferring or returning high air volumes at minimum pressure requirements
- Made of extruded aluminium
- Rigid, heavy gauge extruded frames with reinforced mitered and welded corners
- Surface mounting or concealed mounting
- Sizes manufactured on request
- Filter: Non woven fabrics or nitrilon

DIFFUSERS AND GRILLES

30		
-	Face Size (A) = X + 60	

Nominal Neck Metric (X)	Face Size (A)
150×150 mm	200×200 mm
200×200 mm	250×250 mm
300×300 mm	350×350 mm
545×545 mm	595×595 mm
1145×545 mm	1195×595 mm
o 10	

Grilles are powder coated white as standard

The first number is for horizontal dimension and the second number is for vertical dimension

Nom. Neck (mm)	Equivalent Size (mm)	Core Area (m²)	V _κ P _t	1.5 1	2.0 3	2.5 4	3.0 6	3.5 8	4.0 10	4.5 13	5.0 16	6.0 23
150×150	225×100	0.020	Q	30	41	51	61	71	81	91	101	122
			NR	<15	<15	15	19	23	26	29	32	37
200×150	250×125	0.027	Q	41	54	68	81	95	108	122	135	162
	300×100		NK	<15	<15	10	100	23	20	29	32	3/
250×150	500×125	0.034		54 -15	/2	90	108	120	144	20	180	210
	400×100			61	×15 	10	19	1/2	162	182	203	2/3
200×200	350×125	0.036	NR	<15	<15	16	122	24	26	30		38
			0	81	108	135	162	189	216	243	270	324
300×150	450×100	0.041	NR	<15	<15	16	20	24	27	30	33	38
	400×150		Q	84	113	141	169	197	225	253	281	338
300×200	600×100	0.054	NR	<15	<15	16	20	24	27	30	34	39
	350×175		Q	91	122	152	182	213	243	273	304	365
250×250	650×100	0.056	NR	<15	<15	16	20	25	27	30	34	39
	350×200		Q	101	135	169	203	236	270	304	338	405
450×150	700×100	0.061	NR	<15	<15	16	20	25	27	31	35	39
	400×200 500×200	_	Q	122	162	203	243	284	324	365	405	486
300×250	600×125 -	0.068	NR	<15	<15	16	21	25	28	31	35	40
200200	350×250 450×200	0.001	Q	165	221	276	331	386	441	496	551	662
300×300	600×150 950×100	0.081	NR	<15	<15	17	21	26	28	31	35	40
350×350	400×300 500×250	0.110	Q	182	243	304	65	425	486	547	608	729
	600×200 850×150	-	NR	<15	<15	17	21	26	28	31	36	41
450×300	400×350 550×250 700×200	0.122	Q	203	207	338	405	473	540	608	675	810
	950×150	-	NR	<15	<15	17	22	26	28	32	36	41
600×250	500×300	0.135	Q	216	288	360	432	404	576	648	720	864
	750×200		NR	<15	<15	17	22	26	29	32	37	42
400-400	400×350 550×300	0144	Q	243	324	405	486	567	648	729	810	972
400^400	750×200 –	0.144	NR	<15	<15	17	22	26	29	32	37	42
coo	450×400 500×350	0.162	Q	273	365	456	547	638	729	820	911	1094
600×300	750×2509 900×200	0.162	NR	<15	<15	17	22	27	29	33	38	43
450450	500×400 600×350	0.192	Q	304	405	506	608	709	810	911	1013	1215
450*450	700×300 800×250	0.182	NR	<15	<15	17	22	27	29	33	38	43
750×300	500×450 650×350	0.203	Q	380	450	563	675	788	900	1013	1125	1350
	550×400 900×250	-	NR	<15	<15	17	23	27	30	33	38	44
500×500	600×450 650×400	0.225	Q	408	545	681	817	953	1089	1225	1361	1634
	750×350 900×300	-	NR	<15	<15	17	23	27	30	34	39	44
550×550	650×450	0.272	Q	486	648	810	972	1134	1296	1458	1620	1944
	750×400 900×350	-	NR	<15	15	17	24	28	31	35	39	45

SYMBOLS: V_κ – Effective velocity in m/s Pressure (P_t) – All pressures are in Pa (N/m²) Q – Flow rate (l/s)

NR – Noise level index in dB based on a room absorption and one diffuser

DIFFUSERS AND GRILLES

Eggcrate Grilles with Fixing Clip Reducing Neck

Features

- Ideal for exhaust and return air applications.
- The Eggcrate Grille is the most popular and economical for exhaust and return air applications.
- The Eggcrate Grille with fixing clip reducing neck allows the installer to simply push the core up and easily fix the frame into position and drop the core back into the outer frame.

Design

- Capable of transferring or returning high air volumes at minimum pressure requirements
- Made of extruded aluminium
- Rigid, heavy gauge extruded frames with reinforced mitered and welded corners
- Surface mounting or concealed mounting
- Sizes manufactured on request
- Filter: Non woven fabrics or nitrilon

Nominal Neck Metric (X)	Face Size (A)
150×150 mm	200×200 mm
200×200 mm	250×250 mm
250×250 mm	300×300 mm
300×300 mm	350×350 mm
Grilles are nowder coated white as standard	

The first number is for horizontal dimension and the second number is for vertical dimension

Nom. Neck (mm)	Equivalent Size (mm)	Core Area (m²)	V _κ P _t	1.5 1	2.0 3	2.5 4	3.0 6	3.5 8	4.0 10	4.5 13	5.0 16	6.0 23
150×150	225×100	0.020	Q	30	41	51	61	71	81	91	101	122
			NR	<15	<15	15	19	23	26	29	32	37
200×150	250×125	0.027	Q	41	54	68	81	95	108	122	135	162
	300×100		NK	<15	<15	10	100	23	20	29	32	3/
250×150	300×125	0.034		-15	.15	90	108	120	144	102	180	210
	400×100			61	×15 	10	19	1/2	162	182	203	2/3
200×200	350×125	0.036	NR	<15	<15	16	122	24	26	30	33	38
			0	81	108	135	162	189	216	243	270	324
300×150	450×100	0.041	NR	<15	<15	16	20	24	27	30	33	38
	400×150		Q	84	113	141	169	197	225	253	281	338
300×200	600×100	0.054	NR	<15	<15	16	20	24	27	30	34	39
	350×175		Q	91	122	152	182	213	243	273	304	365
250×250	650×100	0.056	NR	<15	<15	16	20	25	27	30	34	39
	350×200		Q	101	135	169	203	236	270	304	338	405
450×150	700×100	0.061	NR	<15	<15	16	20	25	27	31	35	39
	400×200 500×200	_	Q	122	162	203	243	284	324	365	405	486
300×250	600×125 -	0.068	NR	<15	<15	16	21	25	28	31	35	40
200200	350×250 450×200	0.001	Q	165	221	276	331	386	441	496	551	662
300×300	600×150 950×100	0.081	NR	<15	<15	17	21	26	28	31	35	40
350×350	400×300 500×250	0.110	Q	182	243	304	65	425	486	547	608	729
	600×200 850×150		NR	<15	<15	17	21	26	28	31	36	41
450×300	400×350 550×250 700×200	0.122	Q	203	207	338	405	473	540	608	675	810
	950×150	-	NR	<15	<15	17	22	26	28	32	36	41
600×250	500×300	0.135	Q	216	288	360	432	404	576	648	720	864
	750×200		NR	<15	<15	17	22	26	29	32	37	42
400-400	400×350 550×300	0144	Q	243	324	405	486	567	648	729	810	972
400^400	750×200 –	0.144	NR	<15	<15	17	22	26	29	32	37	42
600.200	450×400 500×350	0.162	Q	273	365	456	547	638	729	820	911	1094
600×300	750×2509 900×200	0.162	NR	<15	<15	17	22	27	29	33	38	43
450450	500×400 600×350	0.192	Q	304	405	506	608	709	810	911	1013	1215
450×450	700×300 800×250	0.182	NR	<15	<15	17	22	27	29	33	38	43
750×300	500×450 650×350	0.203	Q	380	450	563	675	788	900	1013	1125	1350
	550×400 900×250	-	NR	<15	<15	17	23	27	30	33	38	44
500×500	600×450 650×400	0.225	Q	408	545	681	817	953	1089	1225	1361	1634
	750×350 900×300		NR	<15	<15	17	23	27	30	34	39	44
550×550	650×450	0.272	Q	486	648	810	972	1134	1296	1458	1620	1944
	750×400 900×350	-	NR	<15	15	17	24	28	31	35	39	45

SYMBOLS: V_κ – Effective velocity in m/s Pressure (P_t) – All pressures are in Pa (N/m²) Q – Flow rate (l/s)

NR – Noise level index in dB based on a room absorption and one diffuser

Door Grilles

Features

- This type of grille is always delivered with a mounting frame, provided with holes for screwing.The arrangement of the blades in inverted "V", impedes vision through it
- when applied in doors, partition wall etc.

Design

- Made of high quality extruded aluminium profile
- Used for air transfer on doors or walls
- Size manufactured on request
- Suitable for a range of wall/door thicknesses

Nominal Neck Size (X) 3(12.7 Face Size (A) = X + 60

Nominal Neck Metric (X)	Face Size (A)
150 mm	210 mm
200 mm	260 mm
250 mm	310 mm
300 mm	360 mm
400 mm	460 mm
450 mm	510 mm
600 mm	660 mm

Grilles are powder coated white as standard

The first number is for horizontal dimension and the second number is for vertical dimension

Flow rat	e	Dim	300×100 200×150	400×100 200×200	500×150 350×200	400×200 300×250	500×200 400×250	600×200 500×250 400×300	600×250 500×300	600×350 500×400	700×400 600×500
(m³/h)	(l/s)	Aκ	0.0156	0.0208	0.0390	0.0448	0.0560	0.0684	0.0855	0.1218	0.1652
50	12.0	Vκ	0.9	0.7	0.4						
50	13.9	Pt	3.6	2.0	0.6						
60	12.0	Vκ	1.1	0.8	0.4						
60	13.9	Pt	5.1	2.9	0.8						
70	46.7	Vĸ	1.2	0.9	0.5	0.4					
70	16.7	Pt	7.0	3.9	1.1	0.8					
	10.4	Vĸ	1.4	1.1	0.6	0.5	0.4				
80	19.4	Pt	9.1	5.1	1.5	1.1	0.7				
		Vκ	1.6	1.2	0.6	0.6	0.4				
90	22.2	Pt	11.6	6.5	1.8	1.4	0.9				
400	05 0	Vκ	1.8	1.3	0.7	0.6	0.5	0.4			
100	25.0	Pt	14.3	8.0	2.3	1.7	1.1	0.7			
400		Vκ	2.1	1.6	0.9	0.7	0.6	0.5	0.4		
120	27.8	Pt	20.5	11.6	3.3	2.5	1.6	1.1	0.7		
		Vĸ	2.5	1.9	1.0	0.9	0.7	0.6	0.5		
140	33.3	Pt	28.0	15.7	4.5	3.4	2.2	1.5	0.9		
		Vĸ		2.1	1.1	1.0	0.8	0.6	0.5		
160	38.9	Pt		20.5	5.8	4.4	2.8	1.9	1.2		
		Vĸ		2.4	1.3	1.1	0.9	0.7	0.6	0.4	
180	44.4	Pt		26.0	7.4	5.6	3.6	2.4	1.5	0.8	
		Vĸ			1.4	1.2	1.0	0.8	0.6	0.5	
200	50.0	Pt			9.1	6.9	4.4	3.0	1.9	0.9	
		Vĸ			1.8	1.6	1.2	1.0	0.8	0.6	0.4
250	55.6	Pt .			14.3	10.8	6.9	4.6	3.0	1.5	0.8
		Vĸ			2.1	1.9	1.5	1.2	1.0	0.7	0.5
300	69.4	Pt			20.5	15.6	10.0	6.7	4.3	2.1	1.1
		Vĸ			2.5	2.2	1.7	1.4	1.1	0.8	0.6
350	83.3	Pt			28.0	21.2	13.6	9.1	5.8	2.9	1.6
		Vĸ				2.5	2.0	1.6	1.3	0.9	0.7
400	97.2	Pt				27.7	17.7	11.9	7.6	3.7	2.0
		Vĸ					2.5	2.0	1.6	1.1	0.8
500	111.1	Pt					27.7	18.6	11.9	5.9	3.2
		Vĸ						2.4	1.9	1.4	1.0
600	138.9	Pt						26.7	17.1	9.4	4.6
		Vĸ							2.3	1.6	1.2
700	166.7	Pt							23.3	11.5	6.2
		Vĸ							2.6	1.8	1.3
800	194.4	Pt							30.4	15.0	8.1
		Vĸ								2.1	1.5
900	222.2	P.								19.0	10.3
		Vĸ								2.3	1.7
1000	250.0	Pt								23.4	12.7
		Vĸ									2.0
1200	277.8	Pt									18.3
		Vĸ									2.4
1400	333.3	Pt									24.9
		Vĸ									2.7
1600	444.4	Pt.									32.6
											02.0

V_κ – Effective velocity in m/s
 Pressure (P₁) – All pressures are in Pa (N/m²)
 Q – Flow rate (l/s)
 NR – Noise level index in dB based on a room absorption and one diffuser

Opposite Blade Dampers

Features

- Opposed Blade Dampers contain steel parts, and are therefore not recommended for use in corrosive environments. If you require a volume control damper suitable for these environments why not look at our uPVC Volume Control
- Damper, with exceptional corrosion resistance thanks to its plastic construction.

Design

- Made of high quality extruded aluminium profile
- Used as damper for square diffuser
- Accurate gear wheel control, screwdriver adjustment
- Size manufactured on request

Nominal Neck Metric

300×300 mm
400×300 mm
500×300 mm
600×300 mm

Grilles are powder coated white as standard Length dimension can be modified based on different specification.

Volume Control Dampers

Features

- These Volume Control Dampers are suitable for regulating or shutting off the air flow in air ducts with rectangular or square crosssections.
- The blades are manufactured from aluminium profiles and the frame is produced from galvanized steel sheets.
- The blade action is realised with the help of gears by a linkage mechanism.
 All of the dampers are produced either with damper actuators or with actuator bases or with a manual locking quadrant.

Design

- Frame depth is 152 mm
- Flange is 35 mm
- Side seals & Blade seals (optional)
- High temperature seals also available for smoke relief
- Size manufactured on request

Blauberg Ventilation Unit 5, 45A Eastern Creek Drive, Eastern Creek, NSW 2766, Australia

> info@blaubergventilation.com.au www.blaubergventilation.com.au

Technical changes reserved. Illustrations and texts are non-binding.

03/2020